Startpistolen i hånd

Jeg er nå i den andre hele uken på skolen. Så langt har det vært en magisk, men samtidig edruende, opplevelse. Vi er i oppstartsfasen, selvsagt som det er, hvilket har stort sett inneholdt informasjon, sikkerhets-briefer og formaliteter.

Det er forfriskende, men allikevel slitsomt å begynne på et nytt verksted. Alt er på andre steder og ingenting er der du forventer. Når det er sagt så er det veldig godt organisert med merkelapper og åpenbare lagringsplasser for verktøy og slikt, men det tar tid å venne seg til nye arbeidsomgivelser. Jeg forsøker så godt jeg kan å være systematisk med å returnere verktøy til sitt rettmessige hjem når jeg er ferdig med det, men jeg har måtte raskt avvenne meg med å stole på at verktøyet jeg henter er det som stod på boksen. To ganger allerede har jeg tabbet meg ut fordi jeg ikke dobbeltsjekket at verktøyet var det jeg antok at det var. Det korrekte er jo å si at jeg ikke har noen andre å klandre enn meg selv og å ta lærdom av det, men det får en til å ville slå noen til blods med en sløv sleiv når ting ikke er på rett plass.

Vi har fått uttdelt en rekke obligatoriske oppgaver som skal innebefatte det mest grunnleggende av det en børsemaker skal kunne. Dette er stort sett produksjonsoppgaver og jeg gleder meg til å takle dem i løpet av året. Noen av mine medelever virket litt betuttet over at det ikke var mer våpenklåing fra dag èn, men det er forståelig at man må ha en god forståelse av funksjon før man piller fra hverandre noe man ikke kan sette sammen igjen. Men det vil nok bli plenty med våpentafsing etterhvert.

Det er ikke så nøye for min del, altså, hvem liker ikke å skyte og mekke på ting, men jeg er mer interessert i maskinersingprosesser, fremstillingsmåter, behandlinger og håndarbeid. Jeg liker å produsere ting, spesielt når jeg har funnet det opp selv. Utvikling er vel og bra, men det er ikke hovedsaklig det mitt fremtidige yrke baserer seg på. Det er selvsagt viktig at en børsemaker kan lage deler og våpen, men så vidt jeg har skjønt er det svært sjeldent at en børsemaker bygger helt nye våpen fra bunnen av. Men denne utdanningen gir meg hvertfall evnen til å gjøre det om jeg måtte ønske.

8de208c3912db6ee4363c75f62e4333f.jpg

Det å forme vår verden til å passe oss, lage innretninger som gjør livet enklere, være herrer over vår egen skjebne og å samarbeide mot en bedre morgendag, det er meningen med livet. Det hørtes veldig poetisk og fjollosofisk ut, men jeg mener det med oppriktighet. Mekanikk og teknologi er fascinerende. Det er på mange måter tilfeldig at akkurat våpen er det som pirrer min interesse, men som jeg har snakket om tidligere så er teknologien på det stadiet mellom at hvem som helst kan gjøre det og at man trenger en doktorgrad i kjernefysikk for å holde på med det. Pluss at det er kunstverk som smeller, what's not to love!?

 

Som aller første produksjons-oppgave skulle vi lage en stokkholder:

DSC_0635.jpg

Denne innretningens oppgave er å beskytte treverk og andre myke materialer i stokken (delen av våpenet man holder i) mot oppspenningsmerker i skruestikken. Denne går altså mellom stokken og stikken, med egne skruer slik at den sitter fast rundt våpenet og blir med fra stikke til stikke dersom det skulle være nødvendig å flytte det. Kjekt.

Vi hadde en mal å gå etter, en av lærerne sine egne, men denne er et eksempel av funksjon over form, så at den var helt lik var ikke nødvenig.

Jeg dreide et stykke rundstål til mål og serraterte det.

DSC_0612.jpg

Nydelig.

Treplatene ble generøst tildelt oss fra klasserommet ved siden av, som driver med treverk. Jeg er ikke helt sikker på hva de driver med, men jeg har lyst til å si møbelsnekker. Enda et nobelt yrke.

Platene ble kappet og tilpasset skruetvingen min

Ut av ren latskap enn noe annet, dvs. mindre bytting av verktøy og dreieskjær lagde jeg alle fire skruene på en gang; jeg fjernet mesteparten av massen med stikkskjæret. Ikke helt den optimale måten å gjøre det på, men det gikk fort.

DSC_0614.jpg

Som perler på en snor.

De ble kappet av med baufil, de stakk for langt ut og var for skjøre i denne tilstanden til å kappe dem av helt med stikkstålet. Dessuten stod pinolen i og det var fare for å skade dem når de løsnet fordi de ikke hadde hatt rom til å falle ned.

Før de ble kappet brøt jeg kantene med en flatfil.

Deretter ble de rettet opp og renset hver for seg med vanlig karbidskjær, boret og gjenget.

DSC_0615.jpg

For å rense den lille siden satte jeg fast en bit gjengestang i kjoksen og skrudde skruen inn på den. Når dreiebeken roterer vil den skru seg i "riktig" retning og sitte godt fast mot kjoksen.

DSC_0636.jpg

Tada! Ingen krevende oppgave, men en fin måte å bli bedre kjent med verkstedet og maskinene.

Flere spennende oppgaver og lærdom venter.

Med begge beina innenfor døra

Veien mot drømmen om å bli børsemaker tar en skarp sving i riktig retning. En vinn-eller-forsvinn satsing hvor jeg bare dro til skolen og møtte opp har båret frukter. Jeg søkte på skoleplass gjennom de vanlige kanaler, men min situasjon plasserte meg langt bak i køen og hindret meg i å komme noen vei på den måten. Så hva skal man gjøre? Når man endelig finner sitt kall er ikke denne karen en som stopper ved første tegn til motgang.

When life gives you lemons, don’t make lemonade. Make life take the lemons back! Get mad! I don’t want your damn lemons, what the hell am I supposed to do with these? Demand to see life’s manager! Make life rue the day it thought it could give Cave Johnson lemons! Do you know who I am? I’m the man who’s gonna burn your house down! With the lemons! I’m gonna get my engineers to invent a combustible lemon that burns your house down!
— Cave Johnson

I et desperat siste forsøk på å bli akseptert av den eneste institusjonen i Norge som utdanner børsemakere, Gauldal VGS, som jeg av flere har blitt fortalt er den beste veien til yrket, møtte jeg opp første skoledag uten mye forvarsel og prøvde lykken.

Det må tydeligvis ha gjort inntrykk siden det virket. Jeg er riktignok ikke en fullverdig elev i den forstand at skolen ikke er forpliktet til å bistå med lærlingplass og slike ting, men jeg får den samme utdanningen og kompetansen som mine medelever, som jeg gleder meg til å bli kjent med.

Mauser-98.jpg

Jeg er selvsagt svært lettet og dypt takknemlig til alle som har bidratt til at dette kunne skje. Men nå starter alvoret og jeg skal gjøre mitt ytterste for å lykkes. Finnes det en bedre bursdagsgave!?

Spesielt takk til mine foreldre, Gunn, Erik, Lars, Morten og lærerene, samt ledelsen på skolen.

Here we go!

Hydraulikk og pneumatikk

Hydraulikk og pneumatikk er svært effektive og smarte måter å overføre mekanisk kraft på. Væsker og gasser har den egenskap at de former seg til omgivelsene og sprer seg likt utover hele det området de har tilgjengelig. De er "smidige" og kan overføre kraft på rare måter og i merkverdige vinkler.

Ordet hydraulikk kommer fra latin, 'hydro' som betyr "vann" og pneumatikk kommer av ordet 'pneuma' som betyr "pust" eller "sjel".

Hydraulikk er læren om væske i bevegelse og trykk i mekaniske systemer, rettere kalt hydrodynamikk og hydrostatikk respektivt.

En fundamental egenskap med væsker er at de er så godt som ukomprimerbare. Det vil si at de er veldig egnet til å omdirigere trykk og kraft.

Dette er hovedforskjellen mellom hydraulikk og trykkluft, siden trykkluft baserer seg på gass, hvilket ER komprimerbar. Væske er teknisk sett komprimerbar, men det komprimerer seg maksimalt ca. 1,5% under enormt trykk.

Hydraulikk brukes når man trenger ren kraftoverføring. Trykkluft brukes i systemer som trenger å slå raskt ut eller være fjæret, som luftfjæring i biler.

Siden ca. 1950 har hydraulikk vært standard teknologi i konstruksjonsmaskiner og er i dag brukt overalt i tung industri, styresystemer, bremsemekanismer, etc. og spiller en stor rolle innen gruvedrift, landbruk m.m.

Pneumatikk er på mange måter likt som damp med tanke på at begge bygger på å komprimere gass, men hovedforskjellen er hvordan de oppnår trykket. Dampdrift oppnås ved å koke vann og lage vanndamp under høyt trykk, noe som skaper veldig mye energi og er hvordan de fleste atomreaktorer lager strøm. Men dampen blir til vann igjen når den avkjøles og den er varm når den er i bruk. Trykkluft er også komprimert gass, men den komprimeres med en kompressor og er kald når den kommer ut og kondenserer ikke slik at den kan brukes på mange felt der damp ville vært upraktisk.

Trykkluft er ikke like effektivt som hydraulikk når det kommer til tungt maskineri, men har mange andre bruksområder og er en svært utbredt teknologi som brukes i transport, styresystemer, fjæringssystemer, robotikk, målesystemer og mye annet. Pneumatikk er også på mange områder "raskere" enn hydraulikk pga. lavere viskositet, mer om det senere.

Pneumatiske sylindre (Pneumatic actuators)

Pneumatiske sylindre (Pneumatic actuators)

Hydrauliske sylindre (Hydraulic actuators)

Hydrauliske sylindre (Hydraulic actuators)

 

Fundamentale prinsipper innen hydraulikk

Grunnprinsippene innen hydraulikk er ofte kreditert til den franske fysikeren Blaise Pascal, og som så mange vitenskapsmenn fra den tiden har han selvsagt en lov og enhet oppkalt etter seg.

Pascal's lov sier at en trykkendring som forekommer hvor som helst i et lukket system med ukomprimerbar væske sprer seg slik at det samme trykket er likt overalt i systemet.

Grunnprinsippene er:

  1. Væsker former seg til beholderen

  2. Væsker er praktisk sett ukomprimerbare

  3. Væsker sprer trykk likt i alle retninger

 

Væsker former seg til beholderen

Væske vil spre seg likt ut til samme nivå og ut i alle kriker og kroker som væskens trykk overkommer.

 

Væsker er praktisk sett ukomprimerbare

Væsker komprimerer seg ca 1-1,5% under et trykk på 20000 kPa (kiloPascal). Hydraulisk olje, hvilket er det som stort sett blir brukt i slike systemer regnes for å være så godt som ukomprimerbar, samt at den smører systemet og hindrer korrosjon.

Væskens molekyler ligger pakket slik at de ikke lar seg pakke tettere. Økt trykk på systemet øker trykket, men væskens volum forblir det samme.

 

Væsker sprer trykk likt i alle retninger

Trykket i et hydraulisk system er likt overalt i systemet.

I flasken til høyre, som er et ofte brukt eksempel på Pascals lov, påføres det et trykk på korken. Dette trykket er likt i hele flasken pga. væsken.

Når en sylinder er koblet til en annen lik sylinder via en slange eller rør vil en volumendring i den ene sylinderen gi en lik volumendring i den andre sylinderen. Trykket i systemet vil være likt overalt.

Væsker er praktiske for å overføre kraft gjennom slanger og rør, gjennom hjørner og andre rare vinkler og veier.

Trykk-trekanten

Trykk i hydrauliske og pneumatiske systemer måles i Pascal.

  • 1 Pascal er 1 Newton per kvadratmeter

  • 1 Newton er kraften som trengs for å gi 1 kilo en hastighet på 1m/s på ett sekund

  • 1 Kilogram er lik 9.80665002864 Newton, som er tyngdekraften til jorden. Dette blir vanligvis rundet av til 9,8 Newton, eller 10 om man er grov i målet .

  • Trykk benevnes som oftest i kiloPascal (kPa)

  • Trykk beskrives også i Bar. 1 Bar er lik 1 atmosfære (atm) (nesten; det er 1.01325 Bar) og er trykket ved havnivået

  • 1 kPa er 1/100 Bar, altså er 1 Bar = 100 kPa eller 100 000 Pascal (10⁵ ). 1 MegaPascal (MPa), 1 million Pascal = 10 Bar

Formlene er som følger:

  • Kraft = Trykk x Areal (F = p x A)

  • Trykk = Kraft / Areal     (p = F / A)

  • Areal = Kraft / Trykk     (A = F / p)

Det er litt forvirrende når vi er vant til metrisk at alle enheter er delelige på 1000 med hverandre or er direkte relaterte at 1 Bar er 100 000 Pa, men det får vi leve med.

I det imperiske system brukes PSI for å måle trykk som står for "pound-force per square inch" og jeg må ærlig talt innrømme at jeg er litt misunnelig på akkurat denne måten å benevne det på. Ja, Pascal gjør akkurat den samme jobben, mye bedre også siden den er en SI enhet, men med PSI er hele formelen oppgitt i enheten og enheten er kun et amalgam av de to variablene man behøver for å finne den;

  • Kraft måles i pund hvor ett pund er 4.44822 Newton

  • Areal måles i kvadrattommer hvor en tomme er 2,54 cm og en kvadrattomme er 0.00064516 m²

 

Atmosfærisk trykk og vekten av vann

I tillegg til trykket man tilfører hydrauliske og pneumatiske systemer er det som sagt et konstant trykk på alt som befinner seg på bakkenivå, kalt 1 atmosfære trykk. Luft veier ikke stort, men når man regner med all luften som befinner seg innen en søyle på 1 kvadratmeter fra bakken og opp til kanten av atmosfæren blir vekten betydelig, ca 10 tonn! Dette trykket som befinner seg på bakkenivå, og som vi alle opplever, kalles en standard atmosfære og er som sagt lik 101 325 Pa, ofte avrundet til 100 000 Pa, som er 1 Bar eller 14,7 PSI.

De fleste trykkmålere kompenserer for dette trykket og viser 0 kPa ved bakkenivå, altså standardtrykk. Trykket i et system som også tar hensyn til atmosfærisk trykk refereres til som absolutt trykk. Når trykket ved havnivået går under atmosfærisk trykk i et system kalles dette et vakuum, og absolutt vakuum vil tilsvare et absolutt trykk på 0 kPa.

Når man dykker er trykket på den dybden man dykker til ofte oppgitt i atmosfærer.

En kubikkmeter vann inneholder 1000 liter og veier da 1000 kg. 1 kubikkmeter vann utgjør en kraft nedover på 9806.650 Newton så med litt matte kan vi regne oss frem til at 1 atmosfæres trykk under vann oppstår 101 325 / 9806.650 = 10, 3 meter under vann. Så når vi befinner oss 10,3 meter under vann opplever vi 2 atmosfærer, vekten av luften pluss vekten av vannet over oss. 20,6 meter ned er da 3 atmosfærer, osv...

 

Så hvordan funker det i praksis?

Den fundamentale tredje egenskapen til hydraulikk og pneumatikk, at trykket sprer seg likt i alle retninger vil da si dersom man påfører et trykk i en væske vil trykket påføre størst kraft på den største overflaten. Trykket er likt overalt, men siden kraft = trykk X areal vil et større areal ha større kraftpotensiale.

Tegningen over et typisk eksempel for å forstå konseptet. En kraft F1, la oss si 50 N, trykker på stempel A1 som har en overflate eksponert til den hydrauliske væsken på 0,001 m², hvor stort trykk blir det i væsken?

Så hvis stempel A2 har et areal på 0,01 m², hva blir da kraften vi får ut i F2?

Vi ser at med en 10-dobling av arealet har vi 10-doblet kraften vi puttet inn i systemet. Dette er på mange måter det samme forholdet som gjelder for tannhjul. Et tannhjul som drives av et 10 ganger mindre tannhjul vil ha 10 ganger kraften som blir tilført det drivende hjulet, men det lille hjulet må gå 10 ganger rundt for at det store skal gå en gang rundt. Det samme gjelder hydrauliske systemer. Hvis man 10-dobler arealet får man 10 ganger kraften, men stempelet går bare 1/10 av distansen som det lille gjør. Så man må presse det lille stempelet 10 ganger så langt som den distansen man vil oppnå med det store.

Det motsatte er også sant som man kan observere på f.eks. sprøyter. Det krever en del trykk for å presse ut væsken, men den skyter ut fortere og mye lengre ut av kanylen enn det man presser på sprøyten.

En liten kraft over en lang avstand erstattes med en stor kraft over en liten avstand og vice versa.

Siden trykket i systemet er likt overalt vil et trykk på 1 Pa være 1 Newton per kvadratmeter, så når man får dette trykket til å trykke på noe som er 10 kvadratmeter vil trykket på den flaten være 10 Pa! Magi!

Så dersom jeg vil løfte en hel bil med en hydraulisk jekk, kun med min egen kroppsvekt, hvor bilen veier 1,5 tonn og jeg veier 65 kilo, hvor liten må sylinderen jeg står på være?

Vel, min kroppsvekt har en kraft på 637.432 Newton mot bilens 14709.975 N. Vi kan med en gang se at sylinderen må være (14709 / 637 = 23,1) hvertfall over 23,5 ganger mindre enn drivstempelet, som er 0,05 m², som gjør at den må bli 0,0022 m² eller mindre.

Stemmer det?

Med bare bilen på jekken påfører den et trykk på systemet på p = 14709.975 / 0,05 = 294,2 kPa. For at jeg skal oppnå det samme trykket må stempelet mitt være A = 637.432 / 294 200 = 0,0022 m². Jepp, det stemmer. Litt mindre så burde jeg ikke har noe problem med å løfte bilen.

 

Flyt og viskositet

Flyt i et hydraulisk system er bevegelsen av en mengde væske gjennom et punkt over en viss tid. Væsker er innelåst i slanger og rør i hydrauliske systemer, så flyt er væskens bevegelse gjennom disse.

Flyt (symbol Q) oppgis i liter per minutt (LPM) eller kubikkcentimeter per minutt (cm³/min) eller per sekund (cm³/sek).

Flyt = Areal (tverrsnitt) X Hastighet     (Q = A x V)

Det er viktig når dette regnes ut å bruke korrekt enhet og verdi på begge sider av ligningen; dersom arealet oppgis i cm² og hastigheten i m/sek må det gjøres om til cm/sek og resultatet blir i cm³/sek, osv...

Viskositet er "tykkelsen" til en væske og i hydrauliske systemer er lav viskositet ønskelig. Jo lavere viskositet en væske har, jo mindre energi kreves for at den skal endre form eller posisjon. En økning i viskositet i en væske vil øke tiden væsken bruker på å bevege seg fra punkt A til B med det samme trykket. Altså vil flyten synke.

Utregning av viskositet er et kapittel for seg selv og ikke rent ukomplisert, men det måles hovedsaklig i Pascal-sekunder, som, hvis jeg skal slakte definisjonen av, betyr at med et trykk på 1 Pa beveger væsken seg X meter på ett sekund. Alle væsker har positiv viskositet, null viskositet observeres kun i supervæsker ved svært lave temperaturer. Generelt sett er væsker regnet som viskose dersom de er betydelig tregere enn vann.

Yoghurt har høyere viskositet enn vann. Hadde du brukt yoghurt i et vanngevær ville det ikke skutt særlig langt.

 

Flyten i et hydraulisk system beskrives enten som laminar flyt eller turbulent flyt. Vi liker å tro at væske beveger seg i den retningen man dytter den uten større problemer, men væske er stort sett turbulent. Laminar flyt er god flyt og er ønskelig, men vanskelig å oppnå.

Det hjelper å ha avrundede kanter i systemet og unngå skarpe ≥ 90 grader retningsendringer.

For å beskrive punktet når en væske eller gass går fra å være laminar til turbulent etter at den kommer ut av "kilden" brukes noe som kalles Reynolds-nummer (Re), introdusert av Sir George Stokes, og popularisert av Osborne Reynolds.

 

Bernoulli's prinsipp, oppkalt etter Daniel Bernoulli, sier at; når hastigheten til en væske øker, synker trykket proporsjonalt. Se video under for demonstrasjon av fenomenet. Det er verdt å nevne at det er ikke teknisk sett et mediums hastighet som fører til en trykkendring, men hastighetsendringen i seg selv som fører til trykkendringen.

Når en væske beveger seg gjennom et system vil den opprettholde lik flyt. Så dersom den går fra et stort rør til et mindre, vil arealet synke, så for å opprettholde samme flyten må naturligvis hastigheten til væsken øke. Dette kalles kontinuitet og beskrives med:

Arealet ganger hastigheten i punkt 1 er lik arealet ganger hastigheten i punkt 2.

Når dette skjer synker trykket. Når væsken går fra et lite rør tilbake til et større rør skjer det motsatte, at hastigheten vil synke og trykket stige.

Dette er også kjent som Venturi-effekten som er en utnyttelse av Bernoulli’s prinsipp.

Bernoullis formel ser normalt sett slik ut:

bernoulli_formel.png

Formelen leses slik: Når flyten er konstant er trykket pluss massen ganger tyngdekraften ganger høyden over bakken pluss massen ganger hastigheten i annen delt på to lik i to ulike punkter i samme systemlinje.

 

 

Trykk i komprimerbare systemer

Pneumatikk oppfører seg litt annerledes enn hydraulikk, siden gasser er komprimerbare.

Boyle's lov, oppkalt etter Robert Boyle, sier at; ved konstant temperatur er forholdet mellom trykk og volum konstant i et lukket system med komprimerbar gass. Altså, når volumet synker, øker trykket. Eller rettere sagt, i en trykkluftkompressor, nårru stapper mer luft inn i samme tanken fårru større trøkk.

Forholdet i Boyle's lov uttrykkes med: P x V = k der P er trykket og V er volumet og k er konstant.

Matematisk kan den brukes slik:

Eksempel på Boyle's lov og atmosfærisk trykk. Flasken ble fylt med luft høyt oppe der det atmosfæriske trykket er lavt og når den ble fraktet ned komprimerte det utvendig trykket volumet på beholderen for å utligne trykket og inni og utenfor.

 

 

I praksis, skjematikk og symboler

I bruk kan et enkelt hydraulisk system se slik ut:

  1. Hydraulisk olje

  2. Reservoar

  3. Filter

  4. Pumpe

  5. Flytretningskontroll

  6. Hydraulisk sylinder med stempel

  7. Linjer (rør eller slanger)

  8. Overtrykksventil

  9. Kjøler

Her representerer de rød linjene væske under trykk og de grønne representerer returlinjene.

Den hydrauliske sylinderen fungerer ved å kontrollere flytretningen til oljen slik at den blir presset inn foran eller bak stempelet slik at det blir produsert henholdsvis minusbevegelse og plussbevegelse, der stempelet går inn og ut respektivt. Pascal's prinsipper blir her observert ved den lille innløpsporten som er mye mindre enn overflaten til stempelet og mangedobler kraften.

Systemet over kan tegnes skjematisk slik:

De skjematiske symbolene for hydraulikk og pneumatikk ble utviklet av ANSI og adoptert av ISO.

Skjematiske tegninger viser koblinger, flyt, og funksjon til komponenter. De indikerer ikke fysisk konstruksjon av komponenter eller verdier og trykk, posisjon av kontroller eller koblingspunkter. Symboler tegnes vanligvis i nøytral eller normal posisjon.

Typen drift og retningen på flyten indikeres med en liten trekant slik:

Systemlinjer som er koblet sammen og linjer som bare krysser hverandre er indikert slik:

Begge måter er riktig.

Andre grunnleggende symboler:

Produksjon av nytt tennstempel

De to siste ukene har jeg fått muligheten til å prøve å lage et nytt tennstempel til en Browning Buck Mark .22 pistol, helt fra bunnen av.

Maskinering og fabrikering av nye deler er noe jeg synes er svært interessant og det å kunne bruke disse ferdighetene til å reparere ting og få de til å fungere igjen er magisk.

Her ser vi den ødelagte tennålen.

Jeg tok mål av delen og skisset opp planen min.

Noen overflødige mål her og der muligens, men det er bedre å ha for mye informasjon enn for lite. En robust kartlegging i starten sparte meg for en del tid senere.

Jeg startet med et ukjent stykke stål, som mest sannsynlig var normalt konstruksjonstål, men vil fungere helt fint til formålet.

Jeg freste ut rette referansesider og gjorde stykket klart til videre presisjonsarbeid.

Deretter freste jeg begge sider med en solid pinnefres til riktig tykkelse, 1,6mm.

Etter å ha frest den ene siden flyttet jeg fresebordet hele fresens tykkelse + 1,6mm utover og freste vekk den andre siden, som etterlot meg med en fin bit med korrekt tykkelse.

Jeg brukte så den samme pinnefresen til å skjære ut grovkonturen til biten mens den stod oppreist og festet til den solide stålbiten i stikken.

Etter det var gjort spente jeg opp stykket på nytt, nå snudd 90 grader for å frese ut hullet i midten. Dette hullet var ikke sirkulært. Det var 2,4 x 3mm så jeg kunne ikke bare bore det ut. Jeg benyttet en liten 2mm pinnefres og sørget for å kun flytte den i Y aksen (opp/ned) slik at den ikke ble utsatt for sideveis stress som kunne ført til at den knakk. Jeg senket den ned gjennom stykket flere ganger til formen til hullet så riktig ut. Hullet er avlangt for å tillate tennålen å bevege seg fritt på tross av rullesplinten som holder tennålen på plass, men må ikke hindre tennålen i å overføre slaget fra hammeren til patronen.

Da det var gjort spente jeg stykket opp tilbake i oppreist posisjon og kuttet av biten med et kutteblad.

Under ser vi delen og den gamle ødelagte biten som den skal erstatte.

Herfra og utover var det stort sett håndarbeid med filing, sliping og pussing før det siste steget kunne utføres.

Nå begynner det å ligne på noe.

Etter grovfilingen fulgte pussing med fint smergel (600) for å gi delen en bedre og finere overflate og fjerne de siste merkene etter maskineringen og filingen.

Etter litt finpussing ble den siste polishen gjort med fin pussemaskin.

Dette bildet ser jo nesten profesjonelt ut!

Etter mye inn og ut av pistolen for å gjøre siste tilpassinger og sørge for at delen opererer som den skal, var jeg tilfreds med formen og alle klaringene og toleransene.

Nå følger det siste steget, herding og anløping som jeg fikk hjelp med av en av mine mentorer.

Her varmes biten opp til den er rødglødende og dyppes i et pulver som inneholder karbon og smelter det slik at stålet trekker til seg mer karbon.

Herding gjøres for å endre mange ulike egenskaper med metaller som strekkfasthet, hardhet, osv.

Hardheten til metallet kan måles med Rockwell-skalaen og viser hvor motstandsdyktig metaller er mot plastisk deformasjon.

Når metallet herdes skal det raskt avkjøles ved å dyppe det i vann eller olje for å "låse fast" molekylene i materialet i en sterk strukturering som gjør det anspent og knallhardt når det er nedkjølt.

Når man tilsetter mer karbon blir stålet mye hardere, men også sprøere og kan lett knekke. Derfor må man etter herde-prosessen anløpe metaller, dvs. varme det opp til ca 200-400 grader, avhenging av ønskede egenskaper og metallet / legeringen.

Etter delen var herdet slipte jeg vekk det ru skallet for å kunne anløpe den. Det er viktig å se på delen når den anløpes siden det er ofte fargen som oppstår man bruker til å anløpe ting og da må biten være ren og blank med en fin overflate.

Anløping gjøres for å slippe opp litt av stresset i metallet som oppstår ved herding. Dette gjør det mer bøyelig og mindre utsatt for å knekke eller sprekke, samtidig som det opprettholder store deler hardheten fra herdingen. Pluss at det får helt nydelige farger.

Vakkert!

Sannhetens øyeblikk. Fungerer den?

Jada! Avfyrte trygt og pålitelig.

Dette var et fint prosjekt for meg siden det hadde mye rom for feil. Dersom jeg gjorde noe galt var det kun en liten bit stål som ble tapt og ikke en enestående våpendel som var ødelagt for alltid. Det vil så klart ikke være sånn i fremtiden, men for øyeblikket setter jeg pris på bare å få kunne lære tips, triks og teknikker med rom for å feile. Erfaring er den beste lærer, men jeg vil helst ikke mestre noe ved å øve meg på andres eiendeler, for øyeblikket.

Korrosjon

Korrosjon er en fellesbetegnelse for reaksjonen (oksidasjon) som oppstår mellom metaller og luft og/eller vann eller en elektrolytt, som f.eks. saltvann.

Når man snakker om korrosjon er det vanligvis negativt; laget som danner seg på metaller og spiser det opp er ofte uønsket og er et stort problem generelt sett, men begrepet kan også brukes for å beskrive en ønsket reaksjon eller kontrollert korrosjon.

 

Kjemisk korrosjon

Når metaller kommer i kontakt med oksygen og hydrogen reagerer det ved å danne oksider, hydroksider eller sulfider. De fleste metaller ligger nogen lunde midt i det periodiske system og reagerer enkelt med andre stoffer. De "edle" metallene, bl.a. kobber, palladium, gull, sølv og platina, reagerer svært lite og meget sakte med omgivelsene og er de eneste metallene som finnes i ren form i naturen.

Ordet oksidasjon kommer fra oksygen og er reaksjonen som forekommer når oksygen kommer i kontakt med metaller.

Siden reaksjonen tar atomer fra metallet og luften/vannet og danner nye stoffer "spiser" dette opp metallet, og det nye stoffet, f.eks jernoksid, legger seg som et lag utenpå det opprinnelige metallet. Dette laget kalles gjerne rust, men det gjelder da kun i tilfellet til jern. Jern ruster og kobber irrer, alle andre metaller korroderer.

Når vi sier at noe ruster er det oftest snakk om overflatekorrosjon.  Dette er alminnelig korrosjon som legger seg jevnt over hele materialet (uniform korrosjon).

Punktkorrosjon eller "pitting" er korrosjon av enkelte deler og mindre områder på et materiale og kan være vanskelig å oppdage. Oppstår gjerne i hull eller sprekker i lakk og annen beskyttende etterbehandling.

Erosjonskorrosjon er korrosjon som kommer av bevegelse mellom metall og korroderende materiale, som foreksempel vann i rør eller metall som gnisser inntil andre ting som bidrar til at oksidlaget blir slipt bort som akselererer korrosjon av nytt metall under.

Stagneringskorrosjon er korrosjon som oppstår av akkumulering av fukt eller andre korroderende stoffer i områder hvor det har en tendens til å bli liggende lenge uten renne bort eller fordampe, som under skruehoder, pakninger eller i groper.

Andre faktorer som pH-verdi i miljøet rundt kan også påvirke korrosjonen.

 

Elektrokjemisk (galvanisk) korrosjon

Galvanisk korrosjon er korrosjon som oppstår mellom to ulike metaller som er i direkte kontakt eller elektrisk sammenkoblet med hverandre. Alle metaller har ulikt elektrisk potensiale, eller spenning, og reagerer kraftigere avhenging av hva slags metall det er i kontakt med.

Det beskriver i bunn og grunn hvilke metaller som er mest reaktive, eller gir fra seg elektroner lettest.

Som man kan se er sink og magnesium veldig reaktive, dvs. de slipper lett taket på elektronene sine hvis de blir bedt om det av et mer positivt metall, som f.eks. stål og fungerer som en anode og skaper positivt ladede ioner. Hadde man parret sink med et enda mer reaktivt metall ville sink blitt katoden.

Det er 3 betingelser for at galvanisk korrosjon skal finne sted:

  1. Metallene må være elektrokjemisk ulike
  2. De må ha en elektrisk forbindelse
  3. En elektrolytt, som f.eks. vann, må være tilstede mellom metallene

 

Enkelt om kjemien bak det

Som vi kan se på det periodiske system over er f.eks. helium helt til høyre og hydrogen helt til venstre. Atomnummeret beskriver antallet protoner og nøytroner atomet har, og i en normal nøytral form har atomet like mange mange elektroner som protoner.

Atomer har flere "skall" med elektroner, noe som kategoriseres med elektron-konfigurasjonen. Atomer kan ha maksimalt 2 elektroner i det innerste skallet, deretter 8, så 18 i det tredje, deretter 32, 50, 72. Et lag må ikke nødvendigvis være fullt før elektroner kan samle seg i det neste. Gull har for eksempel elektronkonfigurasjon 2-8-18-32-18-1.

Atomer med fulle skall reagerer ikke med andre stoffer, f.eks. edelgassene helt til høyre. Alkaliske metaller helt til venstre har et elektron "for mye" så de binder seg gjerne med andre stoffer eller kvitter seg gladelig med elektronet sitt.

Dette skulle tilsi at gull er svært reaktivt, og det er reaktivt, men på en langt langt mindre skala enn man skulle tro. Årsaken til dette er komplisert, men elektronene er pakket så godt sammen at de ikke vil gi slipp på hverandre, inkludert det ytterste, og beveger seg så fort at andre elementer har vanskeligheter med å binde seg til gull. Men nok om det.

Dersom et atom har ulikt antall elektroner som protoner bærer det en ladning og kalles et ion. Atomer med flere elektroner enn protoner er negativt ladet og kalles et anion. Atomer med flere protoner enn elektroner er positivt ladet og kalles et kation. Derav navnene "anode" og "katode". Dette er litt forvirrende ettersom elektrodenes ladning endres når vi tilfører strøm eller trekker ut strøm, som er forskjellen på en galvanisk celle og en elektrolytisk celle. Dette er litt utenfor behovet av kunnskap om galvanisk korrosjon, men en galvanisk celle er i bunn og grunn et batteri og en elektrolytisk celle er mye brukt i forkromming (electroplating) og andre industriprosesser hvor man legger et lag av et metall utenpå et annet.

I en galvanisk celle er det to reaksjoner som finner sted samtidig, reduksjon og oksidasjon. Sammen skaper de en redoks-reaksjon som er en sammenslåing av de to ordene. Stoffer som blir redusert MOTTAR elektroner (katoden) og stoffer som blir oksidert MISTER elektroner (anoden). Det er litt omvendt av det man skulle tro, og det henger igjen fra gammelt av før vi visste bedre, slik mye gjør, men det er nå engang slik.

I eksempelet om elektrolytisk behandling til venstre tilfører man positiv spenning og "drar" elektroner ut av sølvet(+) som da har mer lyst til å binde seg til oksygenet i elektrolytten og skaper positive ioner (siden de nå mangler elektroner) og flyter bort til skjeen av stål (-) hvor de gjenforenes med sine tapte elektroner som har tatt veien gjennom batteriet og legger seg som sølv på utsiden av stålskjeen. Vi tvinger dette til å skje ved å tilføre spenningen. Hadde det ikke vært noen ekstern spenningskilde ville skjeen rustet siden sølv er mindre reaktivt enn stål og hele prosessen ville forekommet i revers.

Det er relativt enkle kjemiske formler og kalkuleringer inne i bildet her for å beskrive redoks-reaksjoner, halv-reaksjoner, ionisering, oksidasjonstall og slikt, men det er ikke noe jeg sikter på å ta for meg for øyeblikket.

 

Beskyttelse mot korrosjon

Korrosjon og hindringen av det er et eget fagfelt og det er mange måter å utsette eller stanse korrosjon helt.

For eksempel er det vanlig å "skape" galvanisk korrosjon i maritime miljøer for å beskytte stål og andre lett normalt kjemisk korrosive materialer ved å skru fast biter med mer reaktive metaller for at disse skal korrodere før stålet. Vi ofrer et metall for å redde et annet, derav navnet "offeranode". Offeranoder er svært utbredt i skips- og offshoreindustrien for å beskytte skrog og platformbein og lignende.

Offeranoder er vanligvis laget av sink siden det er et av de aller mest reaktive metallene og er kost-effektivt. Disse må byttes ut jevnlig for å opprettholde den galvaniske beskyttelsen.

Galvanisk beskyttelse brukes ikke bare offshore og er svært utbredt i all industri. Galvanisering, som forresten har sitt navn fra den italienske vitenskapsmannen Luigi Galvani, men det var Alessandro Volta som gav det navnet.

Galvanisering brukes til å beskytte det meste. Spiker, skruer, plater, bjelker og mye annet innen bygg og industri.

Varmbads-galvanisering er mest utbredt hvor man rett og slett dypper ting i flytende sink som gir det et beskyttende lag. Først og fremst beskytter det stålet under som om det skulle være malt, men dersom galvaniseringen skulle bli skadet vil sinken fortsette å beskytte stålet via planlagt galvanisk korrosjon.

Metoder for å forhindre uønsket galvanisk korrosjon er blant annet å elektrisk isolere metallene hvis ulike metaller benyttes, ved f.eks. bruk av plastikk/gummi skiver rundt bolter og lignende. Det er anbefalt å ikke overstige en spenningsforskjell på 0,2V når materialer som skal være i elektrisk kontakt skal brukes.

Andre måter å beskytte mot rust innebærer å lage spesielle legeringer (blandinger av forskjellige metaller) som kan gjøre materialet mer beskyttet mot korrosjon.

Utover det er det veldig vanlig å dekke metallet med en eller annen form for tett lag som hindrer luft og fukt fra å komme i kontakt med metallet under. Maling, lakk, blånering, parkerisering, innsmøring med olje eller fett er alle måter å forhindre korrosjon.

Som man kan se på spenningsrekken er aluminium et svært reaktivt metall, men det er kjent for å ikke korrodere...? Dette kommer av at aluminium reagerer raskt med oksygenet og danner aluminiumoksid, som binder seg tett og dypt med aluminiumet under og danner et naturlig beskyttende lag. Av denne grunnen er aluminium også populært i maritime miljøer. Denne egenskapen er for øvrig mye brukt i industrien til ikke bare å beskytte aluminium-produkter mot korrosjon, men også bruke elektrokjemiens vidunderlige verden til å anodisere metaller for å gi dem spreke farger.