Alt du trenger å vite om: Borehode

Et borehode, også kalt utboringshode, (eng.: boring head) er en meget nyttig, nesten uunnværlig, innretning og tilleggsutstyr til enhver vertikal fres.

Et borehode med tilhørende verktøysett.

Et borehode med tilhørende verktøysett.

I all hovedsak er det en måte å transformere en fres om til en “omvendt dreiebenk”, i den forstand at det gjør maskinen i stand til å lage sirkulære former, men arbeidsstykket står fortsatt stille mens verktøyet beveger seg. Forskjellen er at verktøyet som benyttes er en ‘single point cutter‘, vanligvis i form av en borestang (eng.: boring bar).

14D520_AS01.jpg

Et verktøy som i utgangspunktet er beregnet til innvendig dreiing er ypperlig for bruk i et borehode siden det vanligvis har to viktige egenskaper; stor endeklaring og høy spissvinkel. Med andre ord er det formet slik at det presenterer kuttpunktet sitt ut og vekk fra kroppen. Når det kommer til borestenger beregnet for bruk i borehoder er det ikke uvanlig at de har null endeklaring, d.v.s. at de er flate i bunnen, som ofte kan være en fordel.

Borehoder er ypperlig for å lage store hull som må ha en eksakt dimensjon (innvendig boring), forstørre eksisterende hull, forbedre overflatefinheten på hull og lignende. Når man bruker et borehode er det vanlig å finne senter av operasjonen som skal utføres, for så å låse X og Y aksene og mate i Z. Avhengig av operasjonen er det mulig å bruke spindelmating, men det er anbefalt å flytte Z-aksen i steden, for økt stivhet og resultat.

borehode-n.png

Det kan også brukes til det motsatte, å lage sirkulære protruderende aksler (utvendig boring), som ellers ikke ville vært mulig å lage uten et rundmatingsbord eller sirkulær interpolering på en CNC-maskin.

utv_bore2.png

Her stilles verktøyet til riktig diameter og mates nedover, på samme måte som innvendig boring, men - avhenging av verktøyet - må spindelrotasjonen snus, som om vi dreier på “baksiden“ av kjoksen i en dreiebenk.

Typiske operasjoner for borehoder:

operasjoner.png

Et borehode har et par deler hvis funksjon ikke nødvendigvis er videre opplagt. Kunnskap om disse er nødvendig for flere av operasjonene over. Borehoder kommer i ulike grader av kompleksitet.

De er essensielt delt opp i to deler: snekkehuset (kroppen) og sleiden (eng.: body & slide). De er festet sammen med et svalehalespor (eng.: dovetail) og en justeringsskrue som endrer diameteren på kuttet.

VHU 36-n.png

Hovedskruen (eng.: quick setting spindle) er hovedsakelig en grovinnstilling og brukes til å endre diameter raskt. En omdreining her flytter vanligvis sleiden flere millimeter av gangen. Finjustering gjøres med snekkeskruen på siden som er delt opp i hundredels millimetere. Normalt sett er denne oppgitt for diameteren på arbeidsstykket, ikke bevegelsen av sleiden, slik at hvis man flytter skruen én gradering øker man diameteren med 0,01mm, med andre ord flytter sleiden seg 0,005mm. Dette er oppgitt på hodet. Pilene indikerer hvilken retning som flytter sleiden en spesifikk vei.

Bildet over er av et mer avansert borehode, ofte kalt et automatisk borehode eller universalt borehode (eng.: universal boring head, facing & boring head). Det har den funksjonen at det kan mates radialt mens verktøyet roterer, slik at man kan plane eller lage radiale spor i bunnen eller andre steder langsmed hullet eller akselen.

finjustering.jpg

Her ser vi snekkeskruen for finjustering (eng.: fine setting spindle, worm with scale), låseskruen som låser sleiden (eng.: clamping screw, arrest screw), strammeskruer for gib’en (en bit som ligger mellom de to delene i svalehalesporet for å justere slarken, jeg vet ikke om den har noe godt norsk navn) (eng.: slide tension, gib adjust screw), og strammeskruene for å feste verktøyet. Verktøyhullene er vanligvis Ø16 H7.

Det er viktig at verktøyet peker i den retningen man planlegger å mate sleiden, med kuttepunktet/kuttesiden så parallell som mulig med sleiden. Et par grader fra eller til spiller liten rolle, men et stort avvik vil endre både kutteferdighetene, og overenstemmelsen mellom justeringsskrue og faktisk mål.

gib_hovedskrue.jpg

Hovedskruen og gib’en, samt verktøyhullet i siden som gjør det mulig å montere verktøy stikkende rett ut for maksimal rekkevidde.

endestopper.jpg

Over ser vi baksiden der vi finner de to endestoppene (eng.: feed dogs, stops), som avbryter automatisk radiell mating, og kan stilles etter ønsket diameter. En for hver vei. I midten finner vi utløseren (eng.: fixed pin) som endestoppene treffer slik at motstanden blir så stor at clutchen løser ut. Det er en oljenippel på hver side for å smøre sleiden.

Nå kommer vi til hjertet av det universale borehodet:

clutch.jpg

For å aktivere radiell mating må clutchpinnen presses ned i clutchsporet, slik at den aktiveres. Dette kan gjøres med en flat skrutrekker eller lignende. Ringen som pinnen sitter i (eng.: holding ring) roterer fritt. Under sitter materingen (eng.: scale ring) med et spor som clutchpinnen rir i når matingen er aktivert. Denne er koblet til finjusteringsskruen.

Materingen har vanligvis et par ulike valg for matehastigheter, under ser vi 0, 2, 4 og 6, som representerer hundredels millimetere økning i diamater per revolusjon. Her er borehodet stilt inn til 0,06mm/rev mating. 0 betyr at borehodet ikke vil mate, selv om clutchen er lagt inn. Matehastigehten stilles inn ved å vri på matejustering-ringen med det røde indikasjonmerket.

matesjustering.jpg

I clutchringen er det en settskrue som justerer clutchstyrken, altså hvor mye last som skal til før clutchen utløser og stopper matingen. Den har også et hull for håndtak som man er nødt til enten å holde selv eller hvile inntil en stasjonær del av maskinen. Når spindelen igangsettes og håndtaket holdes igjen vil de tre ringene stå stille mens resten av hodet roterer og mater utover til man slipper håndtaket, eller; til endestoppen treffes eller verktøyet overbelastes, begge ting som vil belaste clutchen slik at den løser ut.

Enda mer feinschmecker borehoder som også kan mate aksialt, og begge to samtidig (slik at man kan bore koner!) eksisterer fra produsenter som f.eks. Wohlhaupter.

person-thinking-with-question-mark-questioning-man1.png

Ingen borehoder kommer med skala, så vidt jeg vet. Det eksisterer digitale borehoder som gir deg enkel avlesning av diameter, men disse er ikke til bruk i manuelle maskiner, stort sett.

Så, hvordan setter man borehodet til å kutte riktig diameter?

Det er hovedsakelig to måter å finne dimensjonene sine:

Den første og enkleste er rett og slett å ta et kutt og måle, for så å justere videre derfra.

Den andre er som følger:

  1. Finn en kant på arbeidstykket, eller på et stykke offermateriale

  2. Sett spindel-senter på denne kanten

  3. Null avlesningen på fresen

  4. Flytt kanten bort fra senter lik radien til ønsket kutt

  5. Juster borehodet til verktøyet berører kanten

  6. Et voilá!

På bildet helt øverst i innlegget er det avbildet et borehode med litt tilleggsutstyr. Dette kan kombineres for å utføre en rekke oppgaver:

eksempler.png

Og hvis man føler seg riktig freidig kan man kombinere verktøy som f.eks slik:

eksempler2.png

Borehoder bør ikke kjøres over 1000 RPM, spesielt ikke hvis sleiden er skrudd langt til en side. Dette kan skape vibrasjoner som gir dårligere nøyaktighet og finish. Større hoder bør ikke kjøres over 600. Når det er sagt, her er noen anbefalte skjæredata:

boring head cut data.png

Men ta dette som EKSTREMT veiledende, og ikke som en fasit! Utover det gjelder skjærehastigheter som ellers for materiale og verktøygrad.

Kuttdybde bør ikke overstige 4mm med en mating på 0,06mm/rev (hverken aksialt eller radialt). Men dette avhenger voldsomt av utstikk, materiale, oppspenning, applikasjon, o.s.v. Som en tommelfingerregel kan kuttdybde økes når mating senkes. Det viktige er at lasten blir lik.

Dersom verktøyet vibrerer (sperrer) anbefales det å senke skjærehastigheten eller øke matingen.

Det er hensiktsmessig å ikke ta for tynne kutt hvis det kan unngås (med mindre det er et finkutt selvsagt). Dersom det benyttes skjær med høy spissvinkel kan en kuttdybde som er større enn neseradien bidra til å stabilisere verktøyet.

Krag-Jørgensen kammer-ende (links trapesgjenger!?)

I det siste har jeg blant annet jobbet med å lage en bit av et Krag-Jørgensen løp. Det skal simulere kammer-enden av et Krag-løp for å øve på de diverse finurlighetene som omfatter Kragen og det er god trening i prosesser man ikke gjør så ofte.

Krag løpet er spesielt på mange måter, som gjør det utfordrende å lage det. For det første er gjengene linksgjenget trapesgjenger. Man kan undres om hvorfor. Trapesgjenger er sterke, og det sies at dette var noe Steyr ville ha da de lagde dem. Linksgjengene kan være begrunnet med at dette var en enklere måte å maskinere gjengene på med det utstyret de hadde eller noe i den duren, men det er vanskelig å si med sikkerhet hvorfor noen av disse særegne trekkene ble brukt. Men våpenet ble oppfunnet på en tid da det var hurtig utvikling i feltet og lite var standardisert som det er i dag. Tidlige Kongsberg-produserte Krager hadde firkantgjenger.

For det andre har løpet et frest og filt spor som løfter utdrageren vekk fra patronen slik at patronen ikke skal kunne gi den et støt bakover og oppover som kan gjøre at den lange utdrageren (2 på bildet under) fyker oppover og knekker. At systemet i det hele tatt krever en slik løsning er bare et bevis på et dårlig system spør du meg, men det er nå engang sånn. 

Så, hvordan dreier man trapesgjenger? Dette var det første jeg måtte takle. I bunn og grunn gjøres dette ikke noe annerledes enn vanlige gjenger, men det er et par viktige momenter å ta hensyn til.

Trapesgjenger er i stor grad, mye større grad enn vanlige 60° gjenger, avhengig av et godt og riktig profilskjær. Tykkelsen på skjæret varierer med stigningen og hver stigning trenger et dedikert skjær. Man kan ikke som med 60° gjenger bruke det samme verktøyet på så og si alle stigninger. Det vil si, man kan, men det krever at man gjenger med toppsleiden i en 90° posisjon og øker bredden på kuttet med den; det er ikke "korrekt" måte å gjenge på, men det kan gjøres.

500px-Acme_thread.svg.png

Amerikanske trapesgjenger, også kalt Acme-gjenger, har en total profilvinkel på 29° og altså en flankevinkel på 14,5°. Høyden på gjengene er halvparten av stigningen.

Men Kragens trapesgjenger er ikke 29°, de er 30°. Dette er hovedsakelig den eneste forskjellen på Acme-gjenger og metriske trapesgjenger. 

trapezoidal_threads-n2.png

I atter et fåfengt utbrudd over blanding av standarder og enheter må jeg forbanne de som tenkte det var en god idé å oppgi metriske trapesgjenger med en stigning i tommer. Løpet skal ha 12 gjenger per tomme; 25,4/12 = 2,116, altså er stigningen litt over 2mm...

... men gjengeprofilen bruker metrisk 30° trapesform som skulle tilsi at stigningen ville vært et rundt tall. Men neida.

Uansett, etter å ha høylytt utåndet min oppgitthet måtte jeg finne ut hvordan formskjæret skulle være. Det er vel og bra at jeg vet stigningen, som gir meg tykkelsen på skjæret ved midten av profilen (som er halvparten av stigningen), men hvor tykk skal tuppen være? Den må jo selvsagt være tynnere for å lage selve trapesformen. 

Det finnes en enkel formel, eller rettere sagt, konstant, som kan brukes for å beregne tykkelsen ved rot og tupp av trapesgjenger:

"Litt" refererer her til pasning og klaring for frigang i gjengene og varierer fra kilde til kilde, men for det meste har jeg sett 0,12 mm lagt til C og 0,24 mm lagt til D.

Men denne regelen gjelder for amerikanske Acme-gjenger og vil ikke være helt overførbar til metriske gjenger. Det er bare 1° forskjell, men det kan utgjøre litt endring. Ettersom vi øker flankevinkelen vil topptykkelsen gå mot 0P ettersom det til slutt blir et punkt og ikke en flate. På motsatt side vil dette forholde gradvis gå mot 0,5 P når vi senker flankevinkelen ettersom vi nærmer oss firkantgjenger der topptykkelsen og bunnbredden er lik. Så når vi øker flankevinkelen vil topptykkelsen synke.

Jeg kom med litt tvilsom trigonometri frem til at tuppen på skjæret mitt, uten noen hensyn til rotklaring ville være 0,644mm. Dette gir meg et forhold på 0,3043. Om dette er korrekt er jeg ikke 100% sikker på, men det fungerte greit så jeg må anta at det var noenlunde innenfor.

Med denne informasjonen kunne jeg begynne å tilvirke skjæret mitt. Jeg ville prøve å planslipe skjæret mitt så det ble så nøyaktig og bra som mulig, som en øvelse i presisjon og et forsøk for å se om det er verdt bryet. Det behøves en metode å spenne opp hurtigstålet som skal slipes slik at det kan stilles vinkler i to akser samtidig. Jeg fant en gammel gud-vet-hva som kunne strammes tilstrekkelig og stilles i to vinkler. Den måtte også være magnetisk for å sitte fast på magnetbordet til plansliperen.

Her stilles stålet inn til 15° for å slipe den første siden.

Dessverre har vi ikke tvinge som kan stilles i vinkel, og ihvertfall ikke en som kan stilles i to, så de lesere der ute som måtte grøsse/le over løsningen på bildet over etter min proklamerte higen etter presisjon vil være berettiget, men det var den løsningen jeg fant og det funket fint.

If it's stupid and it works, it ain't stupid.

Trapesgjenger har også vanligvis ganske stor heliksvinkel siden stigningen er så høy i forhold til diameteren, så dette er også en vinkel som må tas hensyn til. Flankene på gjengene er såpass rette og skjæret såpass "høyt" at det er viktig å slipe inn heliksvinkelen, samt klaringsvinkler på begge sider. 

Disse vinklene ble stilt inn og slipt, med den ene forskjell fra normale skjær at heliksvinkelen peker mot høyre og ikke mot venstre siden gjengene er linksgjenger.

30° form ferdig slipt, nå gjenstod kun å slipe spissen til korrekt tykkelse og bygge inn endeklaringen.

Da det var gjort var det på tide å prøve det nye skjæret:

Det ser lovende ut. Utfordringen her og noe som pinte meg litt var at siden gjengene er links så er den enkleste måten å lage dem på å starte innerst og mate utover, og uten et frispor gjør dette at man blir nødt til å øke kuttdybden med en gang man starter maskinen eller presse skjæret inn i stykket før man starter maskinen. Samt at man må være veldig påpasselig og ømfintlig med startspaken når man skal finne igjen begynnelsen av kuttet inne ved roten.

Det finnes bedre måter å gjøre dette på, og dersom man ville laget linksgjenger ved å mate innover må man montere skjæret opp ned og kjøre dreiebenken "bakover".

Gjengene ser korrekte ut, men passer de?

Jada. Litt langt gjengeparti, men det var ment som en øvelse/test. Jeg endte opp med å kutte ned lengden på dette partiet og bruke det videre.

Deretter ble kammeret rømmet og resten av emnet dreid ned til spec.

Det andre litt kinkige trekket ved Krag-løpet er som nevnt rampen til utdrageren. 

Her benyttet jeg litt Blue Dykem (halleluja) merkefarge for opprissing og skrudde på låsekassen for å merke opp hvor sporet måtte være. Dette sporet er ikke helt sentrert.

Igjen så kan jeg ved dette stadiet bare le av min søken etter presisjon med tanke på vinkler. Å rette noe etter stablede parallellklosser er ikke optimalt, men i mangel av noen enkel måte å vinkle etter stikka (f.eks. vinkel passbiter) funket dette helt fint.

Grovformen til sporet ble frest ut, men siden rampen har en konveks form må det files litt til slutt.

Som vi kan se på bildet under skal kurven i rampen (høyre) være slik at kanten sett ovenfra blir rett (venstre).

Etter mye testing og justering fungerte alt som det skulle. De siste to sporene ble frest i sidene og øvelsen var ferdig og ble godkjent.

En meget interessant oppgave som ga meg mulighet til å prøve meg på mer viderekommen gjenging og tilpassing.

Dreieverktøy og skjær

To av oppgavene vi har hatt er å slipe hurtigstål-skjær til dreiebenken. Vi skulle slipe et gjengeskjær og et kronestål. Begge er formverktøy som påfører en profil i arbeidsstykket:

Gjengeskjæret over ble slipt for hånd uten noen form for støtter og sjekket med et slipelære.

Skjæret er 60° slik at hver kuttside er 30° fra senterlinjen.

Klaringsvinklene er like på begge sider og skjæret har ingen innebygd vinkel siden heliksvinkelen for 60° gjenger er så liten at den kan ignoreres.

Dette verktøyet profilerer i X-retningen.

02.jpg

Kronestålet er et formverktøy på den mer tradisjonelle måten i det at den påfører en unormal form på arbeidstykket. Dette verktøyet har flere bruksmåter, men hovedbruken er å krone munningen på løp som jeg har snakket om tidligere. Verktøyet settes slik at spissen er inne i løpet og toppen av buen ligger midt på godset mellom innsiden og utsiden. Verktøyet føres så inn langs Z-aksen og påfører profilen på munningen. Dette vil da resultere i en klassisk jakt-kroning. Verktøyet kan også beveges litt frem å tilbake på X-aksen for å endre kroneprofilen. Dersom en 11° kroning ønskes kan tuppen av skjæret brukes til dette.

Weatherby-Vanguard-308Win-0006-crown.jpg

Jeg tenkte jeg skulle benytte anledningen til å skrive litt om typer skjær og bruksområder, fremstilling og gjenkjenning.

Det finnes hovedsaklig to typer dreieverktøy; hurtigstål og hardmetall.

Hurtigstål-blanks

Hardmetall-inserts

Hurtigstål

Hurtigstål er et høy-legert stål med et høyt karboninnhold som gjør det svært hardt, men sprøtt. Det tåler høyere temperaturer enn vanlig høy-karbon stål uten å miste hardheten sin, vanligvis opp til 500-600 °C. Denne motstandsdyktigheten til temperatur heter "red hardness" på engelsk. Det kalles hurtigstål fordi det er i stand til å bearbeide metall raskere og ved høyere turtall enn annet renere stål. Det er tilført stoffer som lager legeringer som forbedrer egenskapene og levetiden til verktøyet. De vanligste tilføringene er wolfram (W), molybden (Mo), krom (Cr), vanadium (V), kobolt (Co), mangan (Mn) og silikon (Si).

De to vanligste typene hurtigstål kategoriseres i to grupper: T-type og M-type, for hovedsakelig Tungsten(wolfram)-tilføringer og Molybden-tilføringer respektivt. T1 er et hovedsakelig wolfram-legert stål mens M2 er et hovedsakelig molybden-legert stål. Tallet bak bokstaven relaterer ikke nødvendigvis til noe spesielt med den ståltypen, det er først og fremst for å skille dem fra hverandre.

Det finnes uendelig mange varianter og typer hurtigstål, men de vanligste er oppført i tabellen under:

high_speed_chart.jpg

Som vi kan se på tabellen har M serien mye molybden og T serien mye wolfram, men wolfram er den klassiske og tidligere vanligste tilføringen, så M serien har mer wolfram enn T serien har molybden. Kobolt kan også tilføres for å øke levetiden og temperaturmotstanden, dette er da ofte opplyst på stålet. Vanlige benevnelser for dette er HSSE, HSS-E eller HSS-Co.

Wolfram er et tungt og sterkt, sjeldent metall, og har det høyeste smeltepunktet av alle elementer som er oppdaget, ved 3422 °C. Bedre kjent som Tungsten i engelsktalende land etter svensk tung sten, hvem skulle trodd... Wolfram brukes til mye rart, men mesteparten av verdens wolfram-utvinning går til produksjon av wolfram-karbid som brukes i hardmetall.

Molybden er et annet sterkt metall med et veldig høyt smeltepunkt ved 2623 °C. Det binder seg lett og lager harde og sterke bindinger i legeringer. Molybden opplever veldig liten termisk ekspansjon ved høye temperaturer.

Hurtigstål har stort sett en hardhet på over 60 HRC opp til ~67 HRC.

 

Sliping av hurtigstål

Hurtigstål brukes i veldig mange sponfraskillende verktøy, som bor, gjengetapper, freser, rømmere, brotsjer, etc. Men hurtigstål beregnet for bruk i dreiebenker leveres som blanke, uformede biter i mange ulike størrelser og former.

Fordelen med å bruke slike hurtigstål-blanks er at det kan slipes og formes til det formålet man behøver og kan skjærpes når det blir sløvt. 

Et typisk hurtigstål-skjær kan se slik ut:

Disse kalles hovedsakelig "single point cutters" på engelsk, ettersom det bare er ett punkt eller side som kutter, i motsetning til f.eks. et bor der det er to sider som kutter samtidig.

Det finnes mange ulike former etter hvilken operasjon som skal utføres:

Hvilket verktøy som er beregnet for hvilken retning og hva det eventuelt heter kan være litt forvirrende, men som en regel kan vi si at dersom man står mot dreiebenken er høyre-verktøy ikke verktøy som peker mot høyre eller har kuttsiden på høyre, men verktøy som er beregnet på å bevege seg fra høyre mot venstre, altså har de den kuttende siden på venstre.

 

Når det kommer til å faktisk slipe dem er det en del ting som er viktig å forstå:

Skjæret må selvsagt ha klaring fra alle sider bortsett fra kuttsiden slik at skjæret faktisk kan føres inn i materialet uten at noe annet enn kuttsiden treffer arbeidsstykket. Disse formene kan være komplisert å slipe siden man må til tider holde styr på 3 vinkler samtidig.

Det er egentlig ingen fasit på hvilken rekkefølge disse flatene bør slipes i, men som hovedregel kan vi si at:

  • Endeklaringen slipes først. Dette er første del av spissvinkelen: endeklaringen og endeklaringsvinkelen, som slipes samtidig:

Disse to vinklene holdes samtidig. Stålet føres rundt i sirkel mens det holdes stødig til hele den slipte flaten er uniform. Stålet kan også presses inn i steinen og holdes der, men vær obs på at endeklaringen da vil få en slak kurve som er lik radien til slipesteinen og vil ikke bli like sterk.

PROTIP: Det er en fordel at slipemerkene går langs med dreieretningen og ikke lager "fartsdumper" for sponet eller arbeidstykket.

Resultat:

  • Deretter slipes andre del av spissvinkelen og første del av eggvinkelen; klaringsvinkelen og innstillingsvinkelen.

Jeg pleier å holde hele stålet litt på skrå sett forfra mot slipesteinen, vanligvis i samme vinkel som endeklaringen. Ikke egentlig nødvendig, men det gjør slipingen på klaringsvinkelen parallell med endeklaringen, som jeg liker.

PROTIP: Spissere tupp (spissvinkel) vil tåle mindre og gi grovere overflate, spesielt uten neseradius, men kan være nødvendig for å bl.a. lage skarpe innvendige hjørner.

Resultat:

  • Så slipes andre del av eggvinkelen; sponvinkelen og hellingsvinkelen. Denne slipes ofte også på skrå på samme måte som over slik at slipingen blir parallell med endeklaringsvinkelen.

PROTIP: Skarpere sponvinkel og hellingsvinkel vil stort sett føre til en mer 'skjærende' operasjon i stedet for en 'rivende' bevegelse, som vil gi finere overflate. (Kjølevæske vil også drastisk øke overflatefinheten fordi det bl. a. skyller vekk mikro-spon som riper opp overflaten.)

Resultat:

  • Etter dette gjenstår kun å slipe eller hone inn neseradien:

Et grunnleggende og enkelt dreieskjær.

PROTIP: En enkel sponbryter er også å anbefale: En liten grop på tvers av sponvinkelen eller hellingsvinkelen vil øke den effektive eggvinkelen og bidra til at sponet krøller seg og bryter av uten å bli for langt, men denne kan også begrense bruken til skjæret. Sponbryteren burde bli trangere jo lenger vekk fra skjærpunktet den går.

Det kan også lønne seg (for den siste prikken over i'en) å hone eggen med en slipesten eller lignende for en knivskarp egg. Hvis DU skjærer deg på den kan du vedde på at den vil skjære stålet som smør. 

 

 

Hardmetall

Hardmetall er egentlig ikke et metall, det er keramisk bundet wolfram-karbid. Karbider er stoffer der karbon binder seg med andre elementer i veldig strukturerte og solide former. Hardmetall blir ofte omtalt kun som "karbid", men det er teknisk sett en forenkling av "cemented tungsten carbide" ettersom "karbid" som sagt er et fellesbegrep for flere andre materialer som f.eks. titankarbid og tantalkarbid som også brukes til å lage dreieskjær.

Wolfram-karbid (WC) er et veldig hardt materiale, nesten like hardt som diamant, men det er vanskelig å forme. Hardmetall-verktøy er derfor wolfram-karbid blandet med et bindemiddel som sammen sintres, som er en prosess der materialet presses sammen og varmes ved høy temperatur, men uten at det blir flytende. Det lages derfor mange små granuler som pakkes tett sammen og binder seg sammen med hverandre ved hjelp av et middel, vanligvis kobolt.

Denne prosessen smelter det delvis og gjør at det binder seg godt i veldig sterke formasjoner. Derav "cemented".

De tre hovedstadiene ved sintering.

Andre materialer som brukes i produksjon av dreieskjær er bl.a. syntetisk diamant og bornitrid, men sementerte karbider er vanligst.

 

Når vi snakker om hardmetall tenker nok de fleste på utbyttbare karbidskjær (indexable carbide inserts) (høyre), men de finnes også som fastmonterbare hele karbid-biter som varm-loddes fast til en bit med hurtigstål (under.)

Z1x5uupcpEx--n.jpg

Disse verktøyholderne (brazed carbide tooling) kan være tricky å lage så de fåes kjøpt i ISO standarder:

Noen av disse fåes også i venstre og høyre konfigurasjon. Karbid-bitene brukt her har ganske enkel geometri og er relativt billige, men mer komplisert å skifte ut og er derfor ikke så veldig vanlig, spesielt ikke hos store industrielle fabrikanter.

Mer utbredt, blant både industri og hobbyister, er vendeskjær:

Disse har mange fordeler som at de:

  • Arbeider ved høyere skjærehastigheter som gjør at de kan kjøre på økt matehastighet og gjør dem godt egnet til "high speed machining" (HSM) / "high velocity machining" (HVM).
  • Har relativt lang levetid, kombinert med at de kan løsnes raskt og vendes eller vris til en ny kuttside på samme skjær.
  • Kan raskt byttes ut når hele skjæret er brukt opp som bidrar til mindre 'downtime' for maskinen eller firmaet.
  • Gir stort sett finere overflate rett fra maskinen enn HSS.

Men det er også ulemper:

  • De er ikke like egnet til å gjøre avbrutte kutt, som hvis man dreier over borrede hull eller lignende, karbid liker et konstant og jevnt trykk, men de tåler til gjengjeld veldig mye av det.
  • De er ikke like skarpe som HSS kan bli, som kan gjøre det utfordrende å ta kutt med svært liten kuttdybde med god overflatefinhet. Hardmetall foretrekker ofte å ta litt mer materiale av gangen.

En viktig ting med hardmetall er at man trenger en spesifikk holder til et spesifikt skjær, man kan ikke, i motsetning til HSS, bruke en hvilken som helst holder til alle skjær. Bruker man WNMG skjær må man bruke WNMG holder (f.eks. en MWLNR).

Typer skjær og hvordan de defineres er selvfølgelig en ISO standard ♥ ISO 1832:

Den første bokstaven definerer fasongen på skjæret.

Det er feil å si at en av disse definerende bokstavene er viktigst siden alle er like viktige, men... dette er den viktigste. Du får ikke bestilt noe med bare denne, men det er en start.

Disse er relativt logisk organisert der bokstaver ofte er basert på den første bokstaven i formen, sånn som H, O, P, S, T, R.

Når det kommer til alle de forskjellige variantene av grader på rombe og parallellogram er man bare nødt til å slå det opp.

I eksempelet over er formen W et såkalt 'trigon' som i bunn og grunn er tre 80° trekanter satt sammen til en likesidet trekant-form.

Den andre bokstaven representerer endeklaringen på skjæret.

Akkurat som med hurtigstål så blir skjæret svakere jo mer endeklaring det har, men det kommer ofte til på flere steder og kan jobbe på ting med større diameter (eller kutte høyere over senter).

Den største klaringen er G på 30° og den minste er N som er helt rett / flat med 0°. Disse N-skjærene har ofte endeklaringen bygget inn i holderen:

 

Bokstav nummer tre definerer toleransene til skjæret. Finere toleranser koster selvsagt mer.

Vi er enda ikke kommet til størrelsen på skjæret, det er dekket av posisjon 5 og 6, men det er viktig å oppgi toleranseklassen til skjæret. Dette er da standardisert i følge tabellen over.

Toleransene er mye av det samme, men varierer på hvilket punkt av skjæret som er mest nøyaktig (tykkelse, total størrelse, lengde til egg).

Med toleranse M ser vi at toleransene er relativt store, der total størrelse og lengde til egg er viktigst for denne toleranseklassen. Disse toleransene kan være spesielt viktig i CNC-maskiner der skjæret byttes ut og foventes å produsere like deler som det gamle skjæret uten rekaliberering.

I ANSI standarden er dette mye det samme, men oppgitt i tusendels tommer.

 

Den fjerde bokstaven representerer flere ting; festemåte og sponbryter.

Herunder er alle variasjoner av følgende muligheter: sylindrisk hull, forsenket hull (1 eller 2 sider, samt flere typer forsenkning), sponbryter (1 eller 2 sider), ikke hull, ikke sponbryter.

Skjær med endeklaring noe annet enn 0° kan vanligvis ikke vendes og har derfor ikke noen sponbryter eller forsenkning på andre siden. Skjær uten forsenket hull (kun sylindrisk) er ofte festet til holderen med en låsepinne og/eller klemme.

Nå over til det som virkelig kan frustrere og forvirre: De første to tallene i posisjon 5 bestemmer størrelsen til skjæret ved Inscribed Circle (IC) som er den største sirkelen som får plass i skjæret rundt senter uten at noen del av sirkelen stikker utenfor OG/ELLER lengden av kuttesiden (L).

Alt dette er som sagt egentlig en ANSI standard som er blitt slurpet opp av ISO, og det har jeg ikke noe problem med, det er en grei standard, men da ISO tok den i bruk var produkter allerede etablert i... ikke tusendels tommer, NEIDA, antall 1/16 tommer som går i sirkelen... og ISO valgte derfor å definere noen nye størrelser i millimeter, men også beholde disse tallene i tabellene som standard. Så selv om disse tallene egentlig burde være en metrisk verdi i millimeter, så er de ikke alltid det og det er derfor spesielt viktig at denne verdien slås opp.

Så i eksempelet over, der den innskrevne sirkelen i skjæret skal være en 06 så vil det si 6/16", som er 9,525 mm.

Kan vi aldri få ha en logisk og uniform standard? Man mister litt motet...

Det er en morsom historie angående hvordan Amerika nesten gikk over til metrisk da det enda var en ung nasjon. I 1793 fant regjeringen av de nylig forente stater ut at de trengte et nytt standardisert målestystem ettersom statene fremdeles var relativt fragmentert og brukte forskjellige systemer som gjorde mellomstatlig handel og samarbeid vanskelig. Så på oppfordring av Thomas Jefferson, som også likte 10-tallssystemet, ble en fransk vitenskapsmann ved navn Joseph Dombey sendt over Atlanteren med en kobberstang som var ca. 3 fot lang og en kobbervekt som veide ca. 2 pund. Dette var selvsagt fysiske representasjoner og standarder av det, på den tiden under utvikling, metriske system som var 1 meter og 1 kilo respektivt. Han skulle hjelpe Jefferson å overtale kongressen til å adoptere det metriske system. Men på vei over havet møtte de på en storm som sendte skipet deres lengre sør, nærmere Karibien. Der ble han og skipet tatt til fange av britiske pirater som prøvde å kreve løsepenger for Dombey, men dessverre døde han i fangenskap. Tingene han hadde med seg var ikke av interesse for piratene så de ble auksjonert bort og etterhvert fant kiloet veien til en amerikansk landmåler ved navn Andrew Ellicott. Det gikk i arv til 1952 da etterkommere av Ellicott donerte det til det som kom til å bli NIST (National Institute of Standards and Technology). 

Det er riktignok ikke det eneste forsøket på å importere rasjonalitet til Amerika, men det kunne gjort en forskjell. We will never know.

 

Tallene i posisjon 6 representerer tykkelsen på skjæret. Mye av det samme gjelder her som i posisjon 5, men vi har mer frustrasjon i vente.

I eksempelet over er skjæret definert som 04 som MAN SKULLE TRO vil tilsi 4/16" men det blir 6,35mm som ikke stemmer med denne fabrikantens tabeller, så hva er det som skjer? Det var noens glupe idè at når det kommer til tykkelse så skal det brukes tomme-verdier, men tallet skal representere den nærmeste 1/16 tomme-verdien der det første tallet i millimeter-konverteringen blir 4.

3/16" blir 4,76mm så der har vi svaret. Kjempelogisk.

Avvik fra denne regelen desgineres med en bokstav i stedet for 0, vanligvis T.

Det er viktig å notere seg at tykkelsen måles fra bunnen av skjæret og opp til skjærepunktet/eggen.

Den siste pålagte informasjonen, posisjon 7, representerer neseradien til skjæret. Her er det heldigvis litt mer logikk inne i bildet og de to tallene i denne posisjonen er direkte overførbare til en radius i millimeter. 

I eksempelet over er tallene 08 som betyr at neseradien er 0,8mm.

Man tenke seg at det mangler et komma mellom dem; f.eks. så er 24 2,4mm radius.

For sirkulære skjær der IC = neseradius, designeres dette med 00 hvis størrelsen er konvertert fra tommer og M0 dersom verdien på størrelsen er metrisk.

Den første valgfrie bokstaven, posisjon 8, definerer hvordan eggen er formet og hvordan den er behandlet. Om den er slipt, honet, lakkert, sintret, eller på annen måte bearbeidet.

Men det representerer først og fremst formen på eggen.

Bokstaven i posisjon 9 representerer hvilken hånd eller retning skjæret er ment til å bevege seg i.

 

Posisjon 10 definerer ytterligere formen på eggen dersom skjæret ikke har en enkel tupp med neseradius:

Dette oppgis hovedsakelig dersom posisjon 7 er bokstaver, og slike skjær har vanligvis skrå og skarpe kanter (ingen hjørneradier).

Tabeller hentet fra Mitsubishi Carbide. すみません

Bløtlodding av frontsikte

Å feste et frontsikte på et løp gjøres vel kanskje mindre å mindre disse dager, ettersom jeg har inntrykk av at det foretrekkes å ikke ha noe skur og korn dersom et en ny pipe settes i, men heller bare bruke optiske siktemidler. Men det er allikevel noe vi må kunne og dette skulle bløtloddes fast.

Bløtlodding er en prosess der to eller flere materialer (vanligvis metall) sammenføyes med et fyllmateriale, der dette materialet har er lavere smeltepunkt enn delene som skal sammenføyes. Dette fyllmaterialet er som oftest loddetinn. Bløtlodding foregår hovedsakelig under 450 °C, i motsetning til varm-lodding som foregår hovedsakelig over 450 °C.

Disse formene for sammenføyning bruker kapillæreffekten til å trenge inn i alle kriker og kroker mellom delene som sammenføyes og sørger for en god og solid kobling. Kapillæreffekten gir lett-flytende væsker evnen til å stige eller følge trange og tynne passasjer tilsynelatende på tross av eksterne krefter, som f.eks. tyngdekraften.

Jeg fant et løp med et frontsikte vi hadde liggende og varmet opp frontsiktet for å ta det av slik at jeg kunne sette det på igjen. Frontsiktet og løpet ble pusset og renset med smergel. Deretter ble begge deler smurt med en blanding av loddetinn og flussmiddel. Det er selvsagt viktig at flatene passer mot hverandre, og i dette tilfellet var jeg heldig og jobbet med flater som allerede var tilpasset hverandre, men dersom nye ujusterte deler brukes må radiene tilpasses ved sliping eller maskinering. En kurant måte å tilpasse disse delene på ville vært å legge et lag med sandpapir rundt løpet og brukt det til å slipe siktet.

Delene ble varmet opp hver for seg slik at flussmiddelet/tinnet ble varmet opp og fløt utover delene. Denne prosessen kalles fortinning og klargjør delene for sammenføyning ved å forberede flatene med et rent og tynt lag med tinn. Dette laget er godt festet til sitt respektive underlag (delen) og bidrar til god termisk overføring og binding. Det er viktig at begge flatene er fortinnet ordentlig.

Frontsiktet ble så plassert på løpet etter øyemål og ett lodd ble hengt på det. 

Dette loddet har to oppgaver; det ene er å holde siktet fast og gi motstand til å flytte på seg som gjør det enklere å finjustere plasseringen, den andre er å presse det ned på løpet slik at kontaktflatene blir så korrekt som mulig når tinnet smelter.

Siktet og løpet ble varmet opp med en liten propanbrenner, løpet mer enn siktet siden det er større og dissiperer mer varme. Ekstra loddetinn fra rull ble tilført der det trengtes eller så ut som det manglet.

Løpet ble satt til å kjøle seg ned og da det var kaldt begynte jeg å rense opp overflødig loddetinn og pusse sidene blanke igjen.

Loddetinnet i sømmen ble skrapt vekk, det skal være så lite synlig tinn igjen som overhode mulig.

Det ser ikke videre vakkert ut siden delene jeg jobbet med har nok blitt utsatt for dette mange ganger før. Det er ikke dette frontsiktets første rodeo.

Men selve loddingen ble akseptabel. Varmearbeid er fascinerende og jeg lærte mye av en liten oppgave.

Kuledreier? Kule greier!

Denne uken, blandt mye annet, har jeg endelig blitt ferdig med et prosjekt jeg har holdt på med lengre enn jeg tør å innrømme. Ikke nødvendigvis fordi jeg jobber tregt, men jeg har ventet på nødvendige deler. Men nå er dingsebomsen endelig ferdig og jeg kan fortelle litt om den.

Jeg har laget en kuledreier! Det er et verktøy for å dreie sfærer i dreiebenken.

Jeg startet opprinnelig med å lage den for å lage en hevarmskule:

Bolt-n.jpg

Med tanke på hvor lang tid jeg har brukt på den hadde det definitivt vært mer effektivt å bare lage hevarmen på den gamle måten med frihånds-dreing og fil, men jeg har lært utrolig mye i løpet av produksjonen og verktøyet ble ypperlig som vi får se senere.

Verktøyet består av to store sirkulære deler som roterer på hverandre, sammenknyttet med en M12 bolt med forsenkningshode. Bolten har en sikringsmutter under, inni basen, for å sørge for at den ikke løsner under bruk.

På den øvre delen av basen sitter dreieskjæret i verktøytårnet. Skjærene er festet til en settherdet ståldel som sørger for stabilitet og mothold for skjæret når det møter arbeidsstykket. Denne er så skrudd i verktøytårnet. Skjærene er TCMT 110204 festet med M2,5 torx insert-skruer. Disse spesifikke skruene var hovedsaklig det jeg måtte vente en stund på før jeg kunne få tatt i bruk verktøyet.

Mer om skjær i et fremtidig innlegg.

Verktøytårnet er festet til svalehale-sleiden med to forsenkede M8 bolter.

Sleiden kan beveges frem og tilbake i dette sporet og kan låses fast i ønsket posisjon ved å stramme de fire set-skruene som dytter på den ene sleidekanten.

Hele verktøyet festes i T-sporet i tverrsleiden på dreiebenken med disse to T-spor mutterne her:

Disse blir så strammet av to M8 bolter som er forsenket inn i basen og den øvre delen må vris til riktig posisjon for å få tilgang til boltene.

Den er altså festet slik:

Spaken bak brukes for å vri den rundt arbeidsstykket og dette skaper kuleformen.

Det eneste som nå manglet var et godt grep på denne spaken, så kronen på verket var å lage en messingkule til enden av spaken med verktøyet. På den måten har verktøyet fullført seg selv!

Her er noen videoer av den i aksjon:

Det ferdige resultatet:

 

Hevarmen

Så var den virkelige testen kommet. Å dreie stål; å lage den hevarmen som jeg i utgangspunktet lagde dette verktøyet for.

Jeg fikk en tegning på hvordan hevarmen skulle være. En klassisk hevarm har en litt dråpeformet kule, men siden jeg benyttet kuledreiern min fikk jeg lage en litt mer sfærisk hevarmskule.

Det viktigste å tenke på med dette verktøyet når man skal lage sfærer er at senter av basen, altså det punktet verktøyet roterer om, er rett under og i senter av den kulen som skal dreies. Ved å sette senter utenfor eller forbi midten av kulen kan man lage ovale former og lignende.

Verktøyet har også skjær utvendig for å lage konkave former.

For å bruke verktøyet setter man først skjæret til senter av basen. På bildet under kan man så vidt se to rissede punkter som representerer at tuppen av det innerste skjæret er i senter av basen. Dette er en av de få pirketingene jeg gjerne skulle funnet en finere løsning for, kanskje lodde fast en bit av en linjal, eller på en eller annen måte gravere inn en millimeter-skala, men det er ikke nødvendig og funker helt fint uten.

Deretter kjøres verktøyet inntil arbeidsstykket til det så vidt møtes, og den digitale avleseren på dreiebenken nulles. Det er her viktig at vektøyet står mer eller mindre 90° på arbeidsstykket. Når avleseren er nullet kan tverrsleiden kjøres inn radien av arbeidsstykket (eller diameteren om avleseren er satt til diameter-modus, som de vanligvis er) mens vektøyet blir presset mot arbeidsstykket og da blir dyttet bakover i sleiden og vil innta den nøyaktige radius som arbeidsstykket har. Det er her selvsagt viktig at arbeidsstykket er dreiet ned til ønsket radius på kulen på forhånd.

Verktøyet føres tilbake ut fra arbeidsstykket og låses fast. Det vil da være kalibrert til korrekt radius.

For å begynne å dreie kulen settes en av aksene, X (radial / diameter) eller Z (aksial / lengde) til null, det spiller liten rolle hvilken.

Deretter avanseres kuttet med den andre aksen mens man roterer verktøyet. Etterhvert som man nærmer seg nullpunket for begge akser vil en kule eller halvkule fremarte seg. 

Deretter gjenstod det litt dreiing for å tynne ned selve armen og litt lett filing og pussing.

Den skulle også varmbøyes ca. 30°. Her brukte jeg nok litt for direkte og hard varme og litt mye oksygen i blandingen med acetylenen for det ble brent opp litt stål i bøyepunktet.

Det var ganske mye gods å varme opp, men det gikk nå til slutt og skadene er ikke noe litt smergel ikke kan fikse.

All done! Denne oppgaven tok både et halvt år og én time. Snodig det. Men verktøyet fungerte nydelig og jeg har lært mye av å lage det og hevarmen i seg selv ble ypperlig.