Tips om tapp

Det finnes to typer metallarbeidere; de som har knukket en gjengetapp, og løgnere.

broken_tap.jpg

Det er et uunngåelig faktum at gjengetapper knekker, spesielt jo mindre de blir. De er skjøre verktøy som må behandles med finesse, spesielt dersom man gjenger for hånd.

Det finnes riktignok andre måter å lage gjenger i hull på enn sponbrytende gjengetapper, som rulletapper eller å frese gjengene, men tradisjonelle tapper er mest utbrett. De er en ganske kost-effektiv og allsidig måte å lage gjenger på.



Gjengetappens anatomi og typer tapper:

Klassiske gjengetapper er gjerne laget av hurtigstål eller annet verktøystål og har vanligvis 3 eller 4 rette fluter. Gjengetapper finnes i mange størrelser fra M1 til M64 eller høyere og alt i mellom.

Gjengetapper er selvsentrerende, dvs. de retter seg selv inn til å være koaksiale med hullet. Dette gjør de ved hjelp av en slipt kon på tuppen av tappen:

slipt_kom.png

Gjengetapper kan kjøpes i et sett, eller hver for seg, med hovedsakelig tre ulike utførelser;

unc_tap_set.jpg

Starttappen har en lengre og slakere kon enn de andre for å sørge for god sentrering og enklere starte inngrepet i materialet på en korrekt måte. Starttappen har ikke gjengenes fullstendige profil, så man kan ikke gjenge et hull ferdig med en starttapp. Når gjengene er startet går man over til en hovedtapp som har mer av gjengenes profil og en mer effektiv kon. Til slutt går man gjennom med bunntappen som har gjengenes fullstendige profil og veldig kort kon for å få så mye gjenger som mulig i et hull som ikke er gjennomgående, ofte kalt en “blindt hull“ (eng. blind hole).

De kan skilles fra hverandre med ringene på skaftet. Starttapper har én ring, hovetapper har to ringer, og bunntapper/sluttapper har ingen ringer.



Mer moderne tapper har gjerne en heliks, på samme måte som flutene på et bor, for å bidra til bedre sponevakuering.

straight_shank_tap.jpg

Disse er som regel ment for CNC-maskiner eller andre hjelpemidler som gjenger i én operasjon som f.eks. en pneumatisk gjengearm:

24676-6314179.jpg

Tradisjonelle tapper lager spon som ruller seg opp i spiraler, som til slutt blir for store for de rette flutene. Det er derfor nødvendig å vri tappen bakover en halv gang for å brekke sponet.

straight_shank_tap_.jpg
spiralspon.png

Det sies at dersom man gjenger for hånd, er den konvensjonelle lærdommen å gjenge én omdreining, for så å vri tilbake en halv gang, men fra min erfaring avhenger det veldig av både materiale og tappstørrelse. Men det er en grei tommelregel.

Men en kuttende egg blir utsatt for mest belastning i det den skal re-engasjere med materialet, og jo skarpere eggen er jo bedre er det å fortsette et lengere kutt enn å bryte sponet mer enn nødvendig. Spesielt i materialer som har harde overflater, eller arbeidsherder, som rustfritt, titan eller inconel. Derfor kan spiraltapper (de kalles spiraltapper, men de er egentlig helikstapper) være å foretrekke.

spiral-flute-metalworking-tap.png

Moderne tapper kommer i ulike utførelser, hovedsakelig basert på materialet og bruken de er ment for. De er som regel fargekodet.

Tappen til høyre i bildet under er kun for gjennomgående, eller åpne, hull (through-hole), siden den presser sponet nedover, ikke oppover.

dormer_taps.png

Fargen er noenlunde standardisert, men kan variere mellom fabrikanter. Under er en veiledende tabell. Konsulter fabrikanten.

color-chart-breakdown3_orig.jpg


Hvorfor tapper knekker:

Det er flere faktorer som kan føre til at en tapp knekker:

  • Dårlig overflate

    • En ujevn overflate i hullet kan gi skjev belastning på tappen som kan gjøre at den knekker.

  • Skjevt hull

    • Dersom boret har vandret og hullet ikke er rett vil dette gjøre at tappen møter mer og mer motstand etter hvert som den går nedover og vil til slutt knekke.

  • Skjev start

    • Samme problem som over, men her har tappen entret hullet skeivt, og det er ikke hullet som er vinklet. Dette er antageligvis den mest vanlige kilden til knekkasje (Er det et ord? Det er det nå.) ved gjenging for hånd.

  • For lite hull

    • Dersom hullet ikke er større enn minstediameteren til tappen vil det selvsagt skape veldig mye friksjon og problematikk for tappen.

  • Arbeidsherdet materiale

    • Hvis man skal gjenge hull som er stanset eller friksjonsdrillet kan hullet ha en hard overfalte, selv etter boring, vil det skape et voldsomt trykk for tappen.

  • Kont hull

    • Dersom hullet er f.eks. plasmaskåret, kan det ikke være bare hardere enn normalt, det er antageligvis litt kont som åpenbart vil øke lasten på tappen jo lenger ned den kommer.

  • Eksentrisk start

    • Mye samme problem som skjev start, men her blir problemet ikke at lasten på tappen økes av at materialet økes, men at tappen bøyer seg etter hullet og vil knekke. Tapper av hurtigstål har ofte evne til å bøye seg nok dersom forskjellen er liten, men tapper av hardere materialer som karbid-tapper vil knekke.

  • Ikke-sirkulært hull

    • Dersom hullet ikke er sirkulært vil det skape ujevn last på tappen som skape en rykkete bevegelse som kan bidra til meget forhøyet moment på tappen.

  • Mangel på olje/fett

    • Det er alltid anbefalt å gjenge med enten gjengepasta eller skjæreolje/kjølevæske. Mangel på dette kan skape unødvendig mye friksjon og varmeutvikling.




Generelle tips:

Gjenger man for hånd kan det å bruke feil svingjern være en kilde til knekkasje. Det er et ord nå. Med feil svingjern så mener man et overdimensjonert svingjern. Svingjern har en rekkevidde for tapper de skal brukes på. Men bare fordi en tapp går inn i svingjernet betyr ikke at det er korrekt for jobben. Jo større svingjern man bruker, jo mer arm får man på tappen, som øker momentet og minsker den taktile tilbakemeldingen man får i hendene. Man må ha en viss “feeling” for tappen gjennom svingjernet. Bruker man for stort svingjern mister man denne, det blir for lett å vri om.

0019405_tap-wrench-four-jaw-for-14-to-12-and-m7-100-to-m12-175-taps-td50_415.jpeg
0658-1-Justerbare-svingjern_l.jpg

Dersom man skal gjenge et hardt materiale, spesielt med små tapper, kan det være smart å bruke et gjengebor en tidels millimeter større enn standarden spesifiserer. Dette gjør selvsagt at gjengetappen ikke møter like mye motstand siden den trenger å skjære vekk mindre materiale med flanken.

Når det kommer til små gjengetapper så liker jeg personlig å “spinne“ tappen litt. Ta veldig veldig lite om gangen, men gi tappen ørlite grann fart, ikke mye, men nok til at den skaver av en liten seksjon til, for så å reversere igjen og gjenta. Dette skulle man tro var litt motsatt av det som ville funket, men å skjære gjenger fungerer best, som alle andre sponbrytende bearbeidingsmetoder, med litt skjærehastighet. Å gjenge små hull med rent moment er ikke å anbefale.

Dersom man skal gjenge i dreiebenk er det lurt å bruke pinolen/bakdokken til å sikre en rett og koaksial entré. Koble fra spindelen og vri den for hånd mens du mater bakdokken i ulåst tilstand. Det holder å starte gjengene slik, resten kan gjøres ved å låse spindelen og gjenge for hånd med et svingjern.

image021.jpg

Dersom man skal gjenge noe i fresen kan man enten bruke en teleskopisk gjengekjoks som flyter et stykke opp og ned og gir deg en tapp som er uavhengig av matehastigheten;

BT40-ETP16-ETP20-ETP25-ETP32-ETP40-Telescopic-rigid-Floating-Tap-M16-collet-chuck-cnc-milling-thread.jpg_q50.jpg

Eller man kan vri spindelen for hånd med en fastlåst tapp og løs spindel, eller bruke et senter og bruke det til å støtte en tapp. Tapper har vanligvis en 60° kon i den bakre enden, som riktignok er et resultat av produksjonsmetoden, men det er også ment som støtte og sentrering for gjenging:

P1140536.jpg

Dersom man må gjenge på frihånd finnes det noen hjelpemidler, hovedsakelig en styreblokk (tap guide);

5993_7276_popup.jpg

Så nå som vi vet hvordan man unngår å knekke tapper (litt mindre i hvert fall), hva gjør man dersom ulykken skulle oppstå? Hvilke bergingsmetoder finnes det?

Tappen har knukket!

Ikke bare har den knukket, det skjer jo selvfølgelig alltid på det siste hullet i en del.

Så hvordan fikser vi det?
Det kommer an på hvor tappen har knukket. Vanligvis knekker de i overgangen til hullet slik at det stikker opp en liten bit. Dersom nok stikker opp til å få et godt grep på den med en tang eller lignende kan dette gjøres, men den metoden jeg vil anbefale først er å forsøke å knakke ut tappen. Ved å ta en dor og slå forsiktig på en av eggene i en sirkulær bevegelse kan man slå den ut:

fig093.jpg

Dersom den er for dypt i hullet til å effektivt komme til med en dor er det en mulighet å bruke en ekstraktor:

thread-broken-threaded-crown-04.jpg

Ett sted som selger dette er f.eks. Walton Tools.

Men sannsynligheten for å ha en slik er liten. Et alternativ er å bruke ståltråd. Den bør være så tykk som mulig, så tykk som flutene tillater.

20201008_133204.jpg

Trykk den så dypt ned som mulig. Dersom man gjenger med en spiraltapp, slå den ned så den former seg til flutene.

20201008_133213.jpg

Ta tak med en tang så nærme tappen du kommer, og press nedover mens du vrir bakover.

20201008_133251.jpg

Mer ekstreme løsninger inkluderer å gløde ut tappen og bore den ut. Eller knuse den på en eller annen måte.

I enda mer ekstreme tilfeller kan det være nødvendig å bruke en elektrode/ gnisterodere ut tappen.


Disse mer ekstreme metodene kan ofte gjøre uopprettelig skade på det originale hullet, og dersom det er tillatelig, kan man gjenopprette det ved å bruke noe som heter Helicoil.

Dette er en teknikk som bruker en spesiell tapp for å sette inn en innsats som vanligvis er rundt én standard gjengestørrelse opp, men med samme stigning. De krever spesielle tapper og verktøy for å installere, men vil returnere hullet til dets opprinnelige gjenger. Også noen ganger brukt med hensikt i produksjon, spesielt i bløte materialer som har skruer som skal skrus inn og ut flere ganger siden det gir et mer slitesterkt grensesnitt mellom bolt og del.

filet-rapporte-helicoil-tangfree-free-running-monte.jpg



Til slutt, la oss raskt se på alternative metoder:

Rulletapp:

forming-taps-500x500.jpg

En tulletapp har ofte ingen fluter, siden den ikke kutter vekk materiale, den bare flytter på det. Rulletapper former gjengene mye på samme måte som en serrat, ved å presse materialet til riktig form.

3_n.png

Rullede gjenger er sterkere enn kuttede gjenger, siden kornstrukturen i materialet opprettholdes, men forflyttes, istedenfor å bryte krystallstrukturen med en sponskjærende tapp, men de er mer applikasjon-spesifikke og kan stort sett ikke brukes for hånd, og starthullet må være større enn ved bruk av konvensjonell tapp.

Men den absolutt beste måten å unngå å knekke en tapp på er å ikke bruke en!

Så dersom du kan, så vurder gjengefresing!

PM0915_WhenThreadMilling_a.gif

Skivefres hors de la carte

Man kan i dag få kjøpt verktøy til å gjøre det meste av det man trenger å gjøre, men det hender at det verktøyet man behøver ikke er å få tak i, eller operasjonen man skal utføre er særdeles sær og spesifikk. Da kan det være nødvendig å lage sitt eget.

En slik situasjon dukket opp for meg for en stund siden, og jeg ble nødt til å lage min egen skivefres til ett kutt jeg skulle gjøre i en del.

Hovedproblemet var at jeg skulle gjøre dette manuelt, og ikke i en CNC maskin, der dette ikke hadde vært et problem siden jeg kunne løst det med en kombinasjon av verktøybaner, men siden dette skulle gjøres for hånd så var jeg avhengig av en spesiell form på verktøyet.

skivefres_1.jpg

Å lage et spor eller slisse i en del er én ting, men jeg trengte en spesifikk radie kuttet inn i en del med en gitt sporbredde. Selve bredden kunne jeg riktignok oppnådd med flere passeringer av et tynnere verktøy, men ingen verktøy jeg hadde var av riktig diameter.

Så når jeg skulle lage mitt eget så var det to hovedpunkter å ta hensyn til; diameteren og tykkelsen. Tykkelsen gir seg selv, det er ikke noe poeng å lage verktøyet tynnere enn sporet - innenfor rimelighetens grenser selvsagt - et tynt verktøy som må ta mer enn én passering vil bøye seg dersom det ikke har støtte fra begge sider som hindrer defleksjon. Sporet skulle bli 1,4mm tykt, så da er det tykkelsen jeg lager verktøyet. Hadde kuttet vært så bredt at det hadde begynt å bli et problem for maskinen å drive verktøyet - større kuttbredde fører selvsagt til økt belastning - måtte man jo lagd et tynnere verktøy som passerte flere ganger, men da hadde verktøyet vært så tykt at strukturell stabilitet ikke ville vært et problem.

Radien i sporet jeg skulle lage var 12,5mm, altså måtte jeg lage et verktøy på 25mm.

Jeg bestemte meg for å lage en skivefres med utbyttbare skiver. Hovedsakelig fordi selve fresen blir enklere å lage og lettere å herde når den ikke har en integrert stamme, men også fordi jeg da i fremtiden har en holder til andre freser dersom jeg blir nødt til å gjøre det samme igjen med andre former. Ulempen er at jeg da ender opp med en strammeskrue på undersiden som i noen tilfeller kan være et problem for framkommeligheten til verktøyet.

skivefres_2.jpg

Jeg hadde to valg når det kom til stål; enten lage den av et lavkarbonstål og settherde den, eller gjennomherde et høykarbonstål. Jeg hadde ikke enkel tilgang til settherding da jeg lagde den, så jeg valgte å lage den av et høykarbonstål. Jeg brukte Uddeholm Arne stål, som har et karboninnhold på 0,95%, som gjør det særdeles herdbart. Det er egentlig ikke et verktøystål for kutteverktøy, men det gjør jobben.

Jeg begynte med å tegne opp fresen i CAD (Computer Aided Design, DAK på norsk (DataAssistert Konstruksjon)), i motsetning til CAM (Computer Aided Manufacturing), DAP når norsk (DataAssistert Produksjon).

CAD_skivefres.jpg

Deretter dreide jeg startmaterialet, et par millimeter tykkere enn jeg trengte slik at det opprettholdt formen sin gjennom etterfølgende operasjoner, samt en stamme for oppspenning i delehodet. Som vi ser på bildet over så planla jeg å bore 3mm hull til tennene så det skulle bli mindre materiale å slipe meg gjennom etter herding, så diameteren på dette tidspunktet var rundt 28mm.

skivefres_preharden.jpg

Over ser vi skivefresen før herding. Dette er egentlig den andre jeg lagde, den første ble ikke ordentlig hard, eller rettere sagt, den ble hard, men jeg hadde ikke nok materiale igjen til sliping etter herding, så de to 1mm målene du ser på CAD bildet over representerer materialet pinnefresen lar være igjen før herding, mer om det senere.

Jeg boret hullene i bunnen av tennene, deretter vinklet jeg delehodet 90° og freste vekk resten av det overflødige materialet. Jeg satte den så tilbake i dreiebenken og kappet av stammen som kun var til for å holde den i delehodet. Så planslipte jeg den raskt ned til 1mm tykkere enn du skulle bli etter herding, slik at jeg hadde 0,5mm på hver side, og for å opprettholde retthet under herding var det viktig at den var plan og flat og ikke trakk seg sammen ujevnt ved nedkjøling.

Under er et bilde av den første jeg lagde.

skivefres_forsok_1.jpg

Problemet med mitt første forsøk over var at, (som vi ser på retningslinjene for herding av dette stålet til høyre) jeg ikke hadde mulighet til å hindre dekarborisering under herdeprosessen, enten ved å;

  • pakke biten i rustfri stålfolie for å hindre oksygentilgang

  • settherdingsboks

  • inert atmosfære (som enten å varme opp i et vakuum eller nitrogenfylt kammer)

  • anti-glødeskall pasta

Anti-glødeskall pasta.

Anti-glødeskall pasta.

skivefres_herding_data.png
Stålfolie for å danne en liten oksygenfri atmosfære.

Stålfolie for å danne en liten oksygenfri atmosfære.

Settherding med kasenitt er i bunn og grunn det samme som anti-glødeskall pasta, men med karbon i som blir tilført overflaten.

Den første jeg lagde valgte jeg å varme på 800 °C i 30min, per anbefalingene over. Men siden jeg bare hadde latt det være igjen et par tidels millimetere igjen til sliping etter herding ble for mye av stålet om til glødeskall.

Glødeskall, et resultat av å bli oppvarmet for lenge i en oksygenholdig atmosfære.

Glødeskall, et resultat av å bli oppvarmet for lenge i en oksygenholdig atmosfære.

Jeg forsøkte å slipe den ned til korrekte dimensjoner, men som vi ser under så hadde for mye av karbonet i overflaten brent ut, slik at kuttsidene ikke ble skarpe i det hele tatt.

skivefres1_show.jpg
Ingen kutteevne, bare dytter materialet til side.

Ingen kutteevne, bare dytter materialet til side.

For å få den til å kutte måtte jeg slipe meg ned til hardhet, men det førte også til at den ikke lenger var 25mm i diameter.

skivefres1_kutt2.jpg

Ingen voldsom suksess… Den kuttet, men nå var den jo for liten.

 

Forsøk Nr.2

Som jeg har nevnt tidligere i andre innlegg, så kan det være et problem at noe ikke er gjennomherdet. Det er ikke et like viktig moment her, det er mye viktigere at verktøyet er hardt ytterst. Det er selvsagt ønskelig at den er gjennomherdet, men med en så tynn del er det ikke et problem. Det som derimot var det største problemet mitt, var som sagt at jeg ikke hadde mulighet til å beskytte delen mot dekarborisering / oksidering. Så løsningen ble da å la det være igjen såpass mye materiale at stålet selv ble en beskyttelse mot dekarborisering lenger inn i materialet.

skivefres_layered.png

Så til forsøk nr.2 lagde jeg pre-herding skiven større i alle retninger, og økte herdetemperaturen, men halverte liggetiden, i følge herdedataene.

skivefres_herding.jpg

Etter herding var det rett i anløpningsovnen.

skivefres_anloping.jpg
skivefres_anlop_data.png

Jeg anløpte ved 200 °C i de anbefalte minimum 2 timene, men kun én gang, for jeg var redd for å miste for mye hardhet.

Deretter var den klar for sliping.

Plansliping.

Plansliping.

skivefres_rezero.jpg

Jeg brukte en bit sølvstål til å indeksere den planslipte delen igjen, slik at jeg visste hvor den stod i forhold til tegningen og hvor mange grader jeg skulle vri delehodet.

Sliping med carborundum-kopp

Sliping med carborundum-kopp

skivefres_slip2.jpg

På tide med en liten test.

skivefres_kutt2.jpg

Se det var bedre ja!

skivefres2_show.jpg

Den endte opp med å gjøre jobben ypperlig.

Alle varmebehandlingsdata i dette innlegget er hentet fra Uddeholms datablader om dette spesifikke stålet, her.

Alt du trenger å vite om: Borehode

Et borehode, også kalt utboringshode, (eng.: boring head) er en meget nyttig, nesten uunnværlig, innretning og tilleggsutstyr til enhver vertikal fres.

Et borehode med tilhørende verktøysett.

Et borehode med tilhørende verktøysett.

I all hovedsak er det en måte å transformere en fres om til en “omvendt dreiebenk”, i den forstand at det gjør maskinen i stand til å lage sirkulære former, men arbeidsstykket står fortsatt stille mens verktøyet beveger seg. Forskjellen er at verktøyet som benyttes er en ‘single point cutter‘, vanligvis i form av en borestang (eng.: boring bar).

14D520_AS01.jpg

Et verktøy som i utgangspunktet er beregnet til innvendig dreiing er ypperlig for bruk i et borehode siden det vanligvis har to viktige egenskaper; stor endeklaring og høy spissvinkel. Med andre ord er det formet slik at det presenterer kuttpunktet sitt ut og vekk fra kroppen. Når det kommer til borestenger beregnet for bruk i borehoder er det ikke uvanlig at de har null endeklaring, d.v.s. at de er flate i bunnen, som ofte kan være en fordel.

Borehoder er ypperlig for å lage store hull som må ha en eksakt dimensjon (innvendig boring), forstørre eksisterende hull, forbedre overflatefinheten på hull og lignende. Når man bruker et borehode er det vanlig å finne senter av operasjonen som skal utføres, for så å låse X og Y aksene og mate i Z. Avhengig av operasjonen er det mulig å bruke spindelmating, men det er anbefalt å flytte Z-aksen i steden, for økt stivhet og resultat.

borehode-n.png

Det kan også brukes til det motsatte, å lage sirkulære protruderende aksler (utvendig boring), som ellers ikke ville vært mulig å lage uten et rundmatingsbord eller sirkulær interpolering på en CNC-maskin.

utv_bore2.png

Her stilles verktøyet til riktig diameter og mates nedover, på samme måte som innvendig boring, men - avhenging av verktøyet - må spindelrotasjonen snus, som om vi dreier på “baksiden“ av kjoksen i en dreiebenk.

Typiske operasjoner for borehoder:

operasjoner.png

Et borehode har et par deler hvis funksjon ikke nødvendigvis er videre opplagt. Kunnskap om disse er nødvendig for flere av operasjonene over. Borehoder kommer i ulike grader av kompleksitet.

De er essensielt delt opp i to deler: snekkehuset (kroppen) og sleiden (eng.: body & slide). De er festet sammen med et svalehalespor (eng.: dovetail) og en justeringsskrue som endrer diameteren på kuttet.

VHU 36-n.png

Hovedskruen (eng.: quick setting spindle) er hovedsakelig en grovinnstilling og brukes til å endre diameter raskt. En omdreining her flytter vanligvis sleiden flere millimeter av gangen. Finjustering gjøres med snekkeskruen på siden som er delt opp i hundredels millimetere. Normalt sett er denne oppgitt for diameteren på arbeidsstykket, ikke bevegelsen av sleiden, slik at hvis man flytter skruen én gradering øker man diameteren med 0,01mm, med andre ord flytter sleiden seg 0,005mm. Dette er oppgitt på hodet. Pilene indikerer hvilken retning som flytter sleiden en spesifikk vei.

Bildet over er av et mer avansert borehode, ofte kalt et automatisk borehode eller universalt borehode (eng.: universal boring head, facing & boring head). Det har den funksjonen at det kan mates radialt mens verktøyet roterer, slik at man kan plane eller lage radiale spor i bunnen eller andre steder langsmed hullet eller akselen.

finjustering.jpg

Her ser vi snekkeskruen for finjustering (eng.: fine setting spindle, worm with scale), låseskruen som låser sleiden (eng.: clamping screw, arrest screw), strammeskruer for gib’en (en bit som ligger mellom de to delene i svalehalesporet for å justere slarken, jeg vet ikke om den har noe godt norsk navn) (eng.: slide tension, gib adjust screw), og strammeskruene for å feste verktøyet. Verktøyhullene er vanligvis Ø16 H7.

Det er viktig at verktøyet peker i den retningen man planlegger å mate sleiden, med kuttepunktet/kuttesiden så parallell som mulig med sleiden. Et par grader fra eller til spiller liten rolle, men et stort avvik vil endre både kutteferdighetene, og overenstemmelsen mellom justeringsskrue og faktisk mål.

gib_hovedskrue.jpg

Hovedskruen og gib’en, samt verktøyhullet i siden som gjør det mulig å montere verktøy stikkende rett ut for maksimal rekkevidde.

endestopper.jpg

Over ser vi baksiden der vi finner de to endestoppene (eng.: feed dogs, stops), som avbryter automatisk radiell mating, og kan stilles etter ønsket diameter. En for hver vei. I midten finner vi utløseren (eng.: fixed pin) som endestoppene treffer slik at motstanden blir så stor at clutchen løser ut. Det er en oljenippel på hver side for å smøre sleiden.

Nå kommer vi til hjertet av det universale borehodet:

clutch.jpg

For å aktivere radiell mating må clutchpinnen presses ned i clutchsporet, slik at den aktiveres. Dette kan gjøres med en flat skrutrekker eller lignende. Ringen som pinnen sitter i (eng.: holding ring) roterer fritt. Under sitter materingen (eng.: scale ring) med et spor som clutchpinnen rir i når matingen er aktivert. Denne er koblet til finjusteringsskruen.

Materingen har vanligvis et par ulike valg for matehastigheter, under ser vi 0, 2, 4 og 6, som representerer hundredels millimetere økning i diamater per revolusjon. Her er borehodet stilt inn til 0,06mm/rev mating. 0 betyr at borehodet ikke vil mate, selv om clutchen er lagt inn. Matehastigehten stilles inn ved å vri på matejustering-ringen med det røde indikasjonmerket.

matesjustering.jpg

I clutchringen er det en settskrue som justerer clutchstyrken, altså hvor mye last som skal til før clutchen utløser og stopper matingen. Den har også et hull for håndtak som man er nødt til enten å holde selv eller hvile inntil en stasjonær del av maskinen. Når spindelen igangsettes og håndtaket holdes igjen vil de tre ringene stå stille mens resten av hodet roterer og mater utover til man slipper håndtaket, eller; til endestoppen treffes eller verktøyet overbelastes, begge ting som vil belaste clutchen slik at den løser ut.

Enda mer feinschmecker borehoder som også kan mate aksialt, og begge to samtidig (slik at man kan bore koner!) eksisterer fra produsenter som f.eks. Wohlhaupter.

person-thinking-with-question-mark-questioning-man1.png

Ingen borehoder kommer med skala, så vidt jeg vet. Det eksisterer digitale borehoder som gir deg enkel avlesning av diameter, men disse er ikke til bruk i manuelle maskiner, stort sett.

Så, hvordan setter man borehodet til å kutte riktig diameter?

Det er hovedsakelig to måter å finne dimensjonene sine:

Den første og enkleste er rett og slett å ta et kutt og måle, for så å justere videre derfra.

Den andre er som følger:

  1. Finn en kant på arbeidstykket, eller på et stykke offermateriale

  2. Sett spindel-senter på denne kanten

  3. Null avlesningen på fresen

  4. Flytt kanten bort fra senter lik radien til ønsket kutt

  5. Juster borehodet til verktøyet berører kanten

  6. Et voilá!

På bildet helt øverst i innlegget er det avbildet et borehode med litt tilleggsutstyr. Dette kan kombineres for å utføre en rekke oppgaver:

eksempler.png

Og hvis man føler seg riktig freidig kan man kombinere verktøy som f.eks slik:

eksempler2.png

Borehoder bør ikke kjøres over 1000 RPM, spesielt ikke hvis sleiden er skrudd langt til en side. Dette kan skape vibrasjoner som gir dårligere nøyaktighet og finish. Større hoder bør ikke kjøres over 600. Når det er sagt, her er noen anbefalte skjæredata:

boring head cut data.png

Men ta dette som EKSTREMT veiledende, og ikke som en fasit! Utover det gjelder skjærehastigheter som ellers for materiale og verktøygrad.

Kuttdybde bør ikke overstige 4mm med en mating på 0,06mm/rev (hverken aksialt eller radialt). Men dette avhenger voldsomt av utstikk, materiale, oppspenning, applikasjon, o.s.v. Som en tommelfingerregel kan kuttdybde økes når mating senkes. Det viktige er at lasten blir lik.

Dersom verktøyet vibrerer (sperrer) anbefales det å senke skjærehastigheten eller øke matingen.

Det er hensiktsmessig å ikke ta for tynne kutt hvis det kan unngås (med mindre det er et finkutt selvsagt). Dersom det benyttes skjær med høy spissvinkel kan en kuttdybde som er større enn neseradien bidra til å stabilisere verktøyet.

Pinnefresens anatomi og hvordan velge riktig verktøy til jobben

Pinnefreser (End Mill) er den vanligste formen for skjæreverktøy til universale freser og valg av riktig pinnefres til jobben som skal gjøres kan utgjøre en stor forskjell. Det er mange dimensjoner å ta hensyn til ved innkjøp og bruk av pinnefreser.

Både materiale som skal freses og applikasjonen er kritiske i valg av fres. 

 

Kuttdiameter og kuttlengde

Fresens diameter og kuttlengde er åpenbart en vesentlig del å ta hensyn til ved valg av fres. Tykkere freser tåler mer og er mer stabile. Rigiditet og motstand mot vibrasjoner og defleksjon er viktig når det kommer til fresing og derfor bør man bruke så tykk fres som det lar seg gjøre. 

Kuttdiameteren er diameteren på den teoretiske sirkelen som dannes når verktøyet spinner rundt. Dersom fresen ikke står sentrert vil kuttdiameteren øke og fresen vil hovedsakelig skjære på én tann, hvilket er langt fra ideelt.

Total lengde (Overall Length), flutelengde (Length Of Flute) og kuttlengde (Length Of Cut) er kritiske ved bruk av lange freser. Dersom en lang fres må benyttes er det bedre å bruke en med lang hals (lang LBS, Length Below Shaft) og kortere kuttlengde siden den har tykkere kjerne/aksel over en større del av den totale lengden enn en tilsvarende lang fres med lengre kuttlengde:

Akseldiameteren har også betydning for hva slags collet eller annen montering og oppspenning som må benyttes. Ofte er akselen tykkere enn kuttdiameteren slik at det kan være problematisk å komme til dersom man skal frese dype spor eller lignende.

 

Fluter

Antall fluter spiller en stor rolle for fresens materialfjerningsevne, matehastigheter, sponevakuering, stabilitet og defleksjon. En fres med flere fluter har en tykkere kjerne som gjør den bedre i stand til å stå i mot radiale krefter og kan derfor f.eks. ta dypere/lengre kutt (stikke lenger ned i arbeidsstykket).

Men med mange fluter blir hver flute liten, altså er det liten plass til sponet som produseres ved fresingen. 

Tradisjonelt kom pinnefreser i utforminger med 2 og 4 fluter, der tommelregelen var å bruke 2 fluter på bløte metaller som aluminium, kobber, etc. og 4 fluter på hardere materialer som stål og andre harde legeringer. Grunnen til dette er at bløte metaller som aluminium er lettere å maskinere, samt at de har en tendens til å pakke seg i flutene og hindre sponevakuering dersom flutene blir for små, mens stål og lignende stor sett krever sterkere freser og lager mindre og mer håndterlig spon som lettere lar seg evakuere selv med grunne fluter.

Med flere fluter kan man også benytte høyere matehastigheter eller oppnå finere overflate med samme matehastighet ved å øke antallet fluter. I moderne produksjon der det settes fokus på hurtig maskinering er flere fluter blitt populært fordi det gir sterkere freser som kan mates fortere og fjerne mer materiale samtidig som det forlenger levetiden til verktøyet grunnet lavere stress på hver tann/flute.

Mer fres gir plass til mindre fluter.

Med nyere materialforskning og produksjon er det blitt vanlig med 3 fluter for aluminium fordi det gir en god balanse mellom god sponevakuering og høye matehastigheter.

 

Endeutforming og profil

Endeutformingen er viktig med tanke på bruken og hvordan fresen skal bevege seg, spesielt med tanke på CNC maskiner.

 

Blant "normale" pinnefreser finnes det hovedsakelig 4 typer:

  • Flat / "vanlig" pinnefres (Square / Flat Nose)
  • Avrundet / Radius (Radius Corner / Bull Nose)
  • Kule (Ball Nose)
  • Fas eller formfres (Chamfer / Formed End)

Avrundede freser, eller radiefreser, er populære der det f.eks. ikke er kritisk med 90° skarpe innvendige hjørner og brukes mye til generell grovforming. Den avrundede kanten på eggen gir en jevnere trykkfordeling på den ellers skarpe tuppen av skjærene som gjør at verktøyet tåler mer og varer lengre. 

Kulefreser er på sett og vis også radiefreser, men de ender ikke opp i en flat del, de lager halvkuler. Disse er mye brukt til forming av kompliserte deler i 3-,4- og 5-akse CNC maskiner der myke overganger mellom passeringer er nødvendig eller rett og slett der det trengs en kanal eller innvendig form med en radius.

Fasefreser eller andre formfreser brukes gjerne til avsluttende passeringer for å fase kanter eller påføre spesielle former på deler av arbeidsstykket.

Når det gjelder flate pinnefreser finnes det hovedsakelig 2 typer: senterskjærende og ikke-senterskjærende

Forskjellen sier seg selv; den ene typen skjærer i midten og kan "plunge", altså stikkes rett ned i arbeidsstykket på samme måte som et bor, den andre kan ikke og må beveges i X eller Y for å skjære.

En annen litt interessant egenskap ved moderne pinnefreser er at tennene mot formodning ikke står helt symmetrisk, men er ofte slipt inn med små variasjoner i gradene mellom dem:

I eksempelet over er det avbildet en 4-fluters flat pinnefres som man skulle tro hadde tenner med 90° intervaller, men de er litt forskjøvet frem eller tilbake slik at ingen av tennene har lik vinkel mellom seg, men vinklene blir selvsagt fortsatt 360° totalt. Dette er for å forhindre "chatter" eller vibrering i verktøyet eller arbeidsstykket ved at fresen treffer en frekvens som resonnerer med intervallene på tennene. Så disse er litt forskjøvet for å forhindre dette.

 

Heliksvinkel

Heliksvinkelen er den aksiale vinkelen på flutene som går rundt akselen. Vinkelen måles mellom senterlinjen til fresen og en rett linje som går tangentielt langs kuttsiden.

En høyere heliksvinkel (45° og oppover) øker fresens evne til å skjære istedenfor å rive og vil stort sett gi en bedre overflate, men gjør fresen skjørere og svakere. En lavere heliksvinkel (30° og lavere) gir en sterkere fres med sterkere kuttsider, men fresen lager grovere overflater siden den river mer enn den skjærer og er bedre egnet til grovbearbeiding.

En fres med middels heliksvinkel (mellom 30° - 45°) vil være godt egnet til allround bruk med akseptable resultater.

Også her lekes det med parametre for å motvirke vibrasjoner og hakking. Høy-prestasjonverktøy har ofte variable heliksvinkler på hver flute som forhindrer ytterligere resonans og bryter opp mønsteret.

 

Flere illustrasjoner hentet fra Harvey Performance

Krag-Jørgensen kammer-ende (links trapesgjenger!?)

I det siste har jeg blant annet jobbet med å lage en bit av et Krag-Jørgensen løp. Det skal simulere kammer-enden av et Krag-løp for å øve på de diverse finurlighetene som omfatter Kragen og det er god trening i prosesser man ikke gjør så ofte.

Krag løpet er spesielt på mange måter, som gjør det utfordrende å lage det. For det første er gjengene linksgjenget trapesgjenger. Man kan undres om hvorfor. Trapesgjenger er sterke, og det sies at dette var noe Steyr ville ha da de lagde dem. Linksgjengene kan være begrunnet med at dette var en enklere måte å maskinere gjengene på med det utstyret de hadde eller noe i den duren, men det er vanskelig å si med sikkerhet hvorfor noen av disse særegne trekkene ble brukt. Men våpenet ble oppfunnet på en tid da det var hurtig utvikling i feltet og lite var standardisert som det er i dag. Tidlige Kongsberg-produserte Krager hadde firkantgjenger.

For det andre har løpet et frest og filt spor som løfter utdrageren vekk fra patronen slik at patronen ikke skal kunne gi den et støt bakover og oppover som kan gjøre at den lange utdrageren (2 på bildet under) fyker oppover og knekker. At systemet i det hele tatt krever en slik løsning er bare et bevis på et dårlig system spør du meg, men det er nå engang sånn. 

Så, hvordan dreier man trapesgjenger? Dette var det første jeg måtte takle. I bunn og grunn gjøres dette ikke noe annerledes enn vanlige gjenger, men det er et par viktige momenter å ta hensyn til.

Trapesgjenger er i stor grad, mye større grad enn vanlige 60° gjenger, avhengig av et godt og riktig profilskjær. Tykkelsen på skjæret varierer med stigningen og hver stigning trenger et dedikert skjær. Man kan ikke som med 60° gjenger bruke det samme verktøyet på så og si alle stigninger. Det vil si, man kan, men det krever at man gjenger med toppsleiden i en 90° posisjon og øker bredden på kuttet med den; det er ikke "korrekt" måte å gjenge på, men det kan gjøres.

500px-Acme_thread.svg.png

Amerikanske trapesgjenger, også kalt Acme-gjenger, har en total profilvinkel på 29° og altså en flankevinkel på 14,5°. Høyden på gjengene er halvparten av stigningen.

Men Kragens trapesgjenger er ikke 29°, de er 30°. Dette er hovedsakelig den eneste forskjellen på Acme-gjenger og metriske trapesgjenger. 

trapezoidal_threads-n2.png

I atter et fåfengt utbrudd over blanding av standarder og enheter må jeg forbanne de som tenkte det var en god idé å oppgi metriske trapesgjenger med en stigning i tommer. Løpet skal ha 12 gjenger per tomme; 25,4/12 = 2,116, altså er stigningen litt over 2mm...

... men gjengeprofilen bruker metrisk 30° trapesform som skulle tilsi at stigningen ville vært et rundt tall. Men neida.

Uansett, etter å ha høylytt utåndet min oppgitthet måtte jeg finne ut hvordan formskjæret skulle være. Det er vel og bra at jeg vet stigningen, som gir meg tykkelsen på skjæret ved midten av profilen (som er halvparten av stigningen), men hvor tykk skal tuppen være? Den må jo selvsagt være tynnere for å lage selve trapesformen. 

Det finnes en enkel formel, eller rettere sagt, konstant, som kan brukes for å beregne tykkelsen ved rot og tupp av trapesgjenger:

"Litt" refererer her til pasning og klaring for frigang i gjengene og varierer fra kilde til kilde, men for det meste har jeg sett 0,12 mm lagt til C og 0,24 mm lagt til D.

Men denne regelen gjelder for amerikanske Acme-gjenger og vil ikke være helt overførbar til metriske gjenger. Det er bare 1° forskjell, men det kan utgjøre litt endring. Ettersom vi øker flankevinkelen vil topptykkelsen gå mot 0P ettersom det til slutt blir et punkt og ikke en flate. På motsatt side vil dette forholde gradvis gå mot 0,5 P når vi senker flankevinkelen ettersom vi nærmer oss firkantgjenger der topptykkelsen og bunnbredden er lik. Så når vi øker flankevinkelen vil topptykkelsen synke.

Jeg kom med litt tvilsom trigonometri frem til at tuppen på skjæret mitt, uten noen hensyn til rotklaring ville være 0,644mm. Dette gir meg et forhold på 0,3043. Om dette er korrekt er jeg ikke 100% sikker på, men det fungerte greit så jeg må anta at det var noenlunde innenfor.

Med denne informasjonen kunne jeg begynne å tilvirke skjæret mitt. Jeg ville prøve å planslipe skjæret mitt så det ble så nøyaktig og bra som mulig, som en øvelse i presisjon og et forsøk for å se om det er verdt bryet. Det behøves en metode å spenne opp hurtigstålet som skal slipes slik at det kan stilles vinkler i to akser samtidig. Jeg fant en gammel gud-vet-hva som kunne strammes tilstrekkelig og stilles i to vinkler. Den måtte også være magnetisk for å sitte fast på magnetbordet til plansliperen.

Her stilles stålet inn til 15° for å slipe den første siden.

Dessverre har vi ikke tvinge som kan stilles i vinkel, og ihvertfall ikke en som kan stilles i to, så de lesere der ute som måtte grøsse/le over løsningen på bildet over etter min proklamerte higen etter presisjon vil være berettiget, men det var den løsningen jeg fant og det funket fint.

If it's stupid and it works, it ain't stupid.

Trapesgjenger har også vanligvis ganske stor heliksvinkel siden stigningen er så høy i forhold til diameteren, så dette er også en vinkel som må tas hensyn til. Flankene på gjengene er såpass rette og skjæret såpass "høyt" at det er viktig å slipe inn heliksvinkelen, samt klaringsvinkler på begge sider. 

Disse vinklene ble stilt inn og slipt, med den ene forskjell fra normale skjær at heliksvinkelen peker mot høyre og ikke mot venstre siden gjengene er linksgjenger.

30° form ferdig slipt, nå gjenstod kun å slipe spissen til korrekt tykkelse og bygge inn endeklaringen.

Da det var gjort var det på tide å prøve det nye skjæret:

Det ser lovende ut. Utfordringen her og noe som pinte meg litt var at siden gjengene er links så er den enkleste måten å lage dem på å starte innerst og mate utover, og uten et frispor gjør dette at man blir nødt til å øke kuttdybden med en gang man starter maskinen eller presse skjæret inn i stykket før man starter maskinen. Samt at man må være veldig påpasselig og ømfintlig med startspaken når man skal finne igjen begynnelsen av kuttet inne ved roten.

Det finnes bedre måter å gjøre dette på, og dersom man ville laget linksgjenger ved å mate innover må man montere skjæret opp ned og kjøre dreiebenken "bakover".

Gjengene ser korrekte ut, men passer de?

Jada. Litt langt gjengeparti, men det var ment som en øvelse/test. Jeg endte opp med å kutte ned lengden på dette partiet og bruke det videre.

Deretter ble kammeret rømmet og resten av emnet dreid ned til spec.

Det andre litt kinkige trekket ved Krag-løpet er som nevnt rampen til utdrageren. 

Her benyttet jeg litt Blue Dykem (halleluja) merkefarge for opprissing og skrudde på låsekassen for å merke opp hvor sporet måtte være. Dette sporet er ikke helt sentrert.

Igjen så kan jeg ved dette stadiet bare le av min søken etter presisjon med tanke på vinkler. Å rette noe etter stablede parallellklosser er ikke optimalt, men i mangel av noen enkel måte å vinkle etter stikka (f.eks. vinkel passbiter) funket dette helt fint.

Grovformen til sporet ble frest ut, men siden rampen har en konveks form må det files litt til slutt.

Som vi kan se på bildet under skal kurven i rampen (høyre) være slik at kanten sett ovenfra blir rett (venstre).

Etter mye testing og justering fungerte alt som det skulle. De siste to sporene ble frest i sidene og øvelsen var ferdig og ble godkjent.

En meget interessant oppgave som ga meg mulighet til å prøve meg på mer viderekommen gjenging og tilpassing.