Et addendum til gjenger

Jeg har i lengre tid forsøkt å vri hodet mitt rundt gjenger og alle dets iboende finurligheter. Noen anstrengelser har vært til mer nytte enn andre, men heliske profiler rundt sylindere fortsetter å gi meg mareritt. Hvordan kan noe så enkelt være så komplekst?

Jeg har skrevet om gjenger før, et generelt overblikk over hva det er, hvilke standarder som benyttes og hvordan de brukes. Men det har ikke nevneverdig fordypet den grunnleggende og intuitive forståelsen av hva det er som gjør gjenger i stand til å utføre sin oppgave som de gjør.

Med fare for å fornedre leserens intellekt må jeg igjen begynne fra starten:

Gjenger er en fellesbetegnelse på ulike profiler som dreier om en akse i en heliks, altså en lineær stigning, på den utvendige eller innvendige flate av sylindere.

Et innvendig gjenget hull og en utvendig gjenget stang av samme nominell diameter og stigning, er laget slik at de skal passe inn i hverandre ved å rotere slik at profilen på stangen havner inni det rommet som er skapt for den i den tilsvarende like profilen i hullet.

Når jeg sier “lik profil“ så mener jeg egentlig “motsatt profil”, den mottakende profil (hullet) må ha plass til profilen til stangen, standard 60° gjenger bare ser like ut fordi profilen er en likesidet trekant.

heliks_advanced.png

Dersom vi hadde brukt et mer ekstremt eksempel, en gjengeprofil som ikke er “symmetrisk“, ville man lettere sett forskjellen:

Her ser vi tydelig hvordan en asymmetrisk profil ville artet seg i en ekstern gjenge. “Toppene” er dobbelt så tykke some “dalene”, og det er i utgangspunktet ikke noe i veien med denne gjengen.

Disse gjengene er egentlig ikke “asymmetriske“, men gjengehøyden er ikke i nærheten av å være lik stigningen, som ellers er vanlig for de fleste normale gjengeprofiler. Her vil gjengehøyden være 1/3 av stigningen, ganske uortodoks, men det er bare et eksempel.

rar_skrue_utv.png

Men vi ser at den interne motparten til disse gjengene må nødvendigvis være “omvendt” for å ha plass til de brede toppene, så i “mutteren” blir “toppene“ veldig tynne, bare 1/3 av stigningen, i motsetning til de utvendige toppene som blir 2/3 av stigningen. Hvorav denne asymmetrien jeg prøver å poengtere.

Problemet her er at skjærverktøyet til utvendige og innvendige gjenger blir veldig forskjellig. Men nok om det, la oss fokusere tilbake på normale gjenger:

rar_skrue_inv.png
skrue_closeup_skrift.png

Når vi skal lage gjenger, så må vi som sagt påføre en profil rundt en stang eller hull. Denne påføringen kan kun gjøres på én måte, og det er å kutte den.
(Det finnes selvsagt unntak som additive prosesser, men i pragmatismens navn så ignorerer vi det.)

Hvordan de kuttes trenger vi ikke å gå inn på, det har jeg som sagt skrevet om før, her.

Men vi kan ikke legge på profilen slik, så kuttes må de, og det betyr at vi må starte med mer materiale enn vi trenger, det er vanskelig å lage spon av ingenting:

profil_utv.png

Altså må vi gjøre slik:

Stordiameteren blir navnet på gjengen; en M20 gjengestang krever et startmateriale på 20mm.

profil_inv.png

Men det samme gjelder ikke hull:

Dersom vi hadde startet med et 20mm hull og dreiet innvendige gjenger i det ville vi endt opp med noe fullstendig ubrukelig:

profil_inv_inv2.png
gjenger_for_store.png

Stangen ville bare sklidd inn og ut fordi stordiameteren til stangen er nå mindre enn minstediameteren til hullet. Vi har i praksis skapt en klaringspasning med et unyttig mønster på.

Altså må vi gjøre slik:

Vi må som sagt starte med mer materiale enn vi skal ende opp med, og det betyr at hullet må bli mindre enn 20mm.

Men hvor mye mindre?

profil_inv_utv.png

Man skulle kunne tenke seg at vi da må starte med minstediameteren til de utvendige gjengene, den diameteren som blir avstanden mellom toppene i hullet, men dette blir heller ikke riktig:

Hvis vi hadde tatt en M20 gjenge, som har en stigning på 2,5, ville minstediameteren blitt 15mm (ikke egentlig, men la oss bruke runde tall for enkelhets skyld).

Vi kan se på bildet til høyre at det ikke ville gått, etter at gjengene var dreid ville de vært altfor trange og krasje.

Hvorfor skjer dette?

skrue_og_hull_feil.png

Vel, det er et resultat av gjengens heliske natur.

Siden profilen består av både et protruderende segment og et intruderende segment; vil den alternere mellom å “stikke inn” og “stikke ut” hver halve omdreining.

profil.png
skrue_basic_skrift.png

Altså er “tykkelsen“ til skruen, sett fra et aksialt tverrsnitt, alltid være minstediameteren + en gjengehøyde (som teknisk sett mer eller mindre tilsvarer en stigning). Eller stordiameteren - en gjengehøyde, avhengig av hvordan du velger å se på det.

aksial_plam.png

Dette tverrsnittet blir altså da en sirkel som “slanger” seg langsetter rundt aksen av skruen i en heliks-formet bane.

Hadde profilen vært påført i en ikke-helisk form, altså at toppene og bunnene havnet på lik linje på hver side av skruen ville det vært korrekt å lage hullet med minstediameteren, men da… vel… da ville det jo ikke gått an å skru den…

giphy.gif
skrue_og_hull_symmetrisk.png

Så derfor må vi lage hullet i stordiameteren - en stigning, så for en M20x2,5 innvendig gjenge blir gjengeboret 17,5mm.

skrue_og_hull_basic.png
tenor.gif
skrue_og_mutter_basic.png


Du har kanskje lagt merke til at gjengebor noen ganger oppgis litt større enn dette, for eksempel er gjengeboret til M10x1,25 8,8 og ikke 8,75?

Vel, det kommer jo først å fremst av at 8,75 ikke er et lett bor å oppdrive, men også fordi det er bedre å lage hullet litt større enn litt mindre enn regnestykket vårt tilsier. Dette er hovedsakelig fordi denne forskjellen mellom nominell hulldiameter og gjengebor diameter blir til toppklaringen for de innvendige gjengene.

Dersom det brukes fullprofilskjær er ikke dette kritisk, det blir tatt hånd om av skjæret, men ved bruk av HSS stål eller gjengetapp er det en fordel at hullet er større enn den teoretiske verdien.

Det må jo nemlig være litt slark for at de to delen faktisk skal være mulig å skrus sammen. Hvor mye slark som er lov å ha er definert i noe jeg ikke før har nevnt når det kommer til gjenger; toleranseklasser.

Nå har jeg riktignok skrevet om toleranser før, her, men ikke når det kommer til gjenger.

Det er stort sett mye av det samme, men gjengene er jo ikke en glatt sylinder, så det kan variere hvor på bolten eller hullet denne pasningen måles.

skrue_og_mutter_closeup2.png

Når det kommer til gjenger, så er ikke stordiameteren eller lillediameteren egentlig det viktigste, men “profildybden”. Siden gjengene består av skrå flanker som møter hverandre, er det her det blir krasj. Dersom profilen ikke er kuttet til riktig dybde blir jo ikke avstanden mellom to flanker på delediameteren (eller midtdiameteren som det også heter) korrekt.

Så hvor dypt man slår gjengene vil påvirke hvor slarkete de blir. Åpenbart nok, men toleranseklassene definerer tillat slark.

I US Customary (imperial) så bruker de en relativt enkel toleransesetting:

A og B, der A refererer til eksterne gjenger og B refererer til interne gjenger.

  • 1A / 1B er en løs pasning ment for dagligdagse applikasjoner

  • 2A / 2B er en litt trangere klaringspasning ment for mer fin-industrielt bruk

  • 3A / 3B er en trang pasning med ganske fine toleranser.

delediameter.png

Men når det kommer tilbake til vårt eget bedre og mer logiske system, så bruker metrisk det samme systemet som for pasninger ellers, men som sagt, hvor dette måles kan variere. Dette er oppgitt i ISO 965/1.

Som vi kjenner så brukes stor bokstav for hull, altså innvendige gjenger, og liten bokstav for stag, altså utvendige gjenger. Toleransegrad 6 er ment for generelt bruk, og mindre tall betyr en trangere toleranse.

Som jeg nevnte tidligere så er det midtdiameteren som er viktigst, og dette er en imaginær linje som alltid ligger på midten av flanken, d.v.s. midt mellom topp og bunn av den teoretiske profilen (stigningen/2). For å måle denne nøyaktig kreves det vanligvis gjenge-mikrometer, som er et kapittel for seg selv.

Metriske gjengetoleranser kan oppgis på 2 måter, med én eller to toleransegrader.

toleransegrader_gjenger.png

Den første graden refererer til midtdiameteren, den andre til stordiameteren. Dersom toleransene er like, sløyfes den ene og begge representeres med en toleranse. Tallene her er ikke de samme som for vanlige stag og hull, se standarden for tall.

Nytt liv til en gammel arbeidshest

Endelig er jeg ferdig et prosjekt som er meg hjertet nært. Et prosjekt jeg har holdt på med siden skoleåret startet i fjor. Min helt egen custom Mauser 98 i .30-06 Springfield! Det ser kanskje ikke sånn ut, men den startet livet som en Karabiner 98k i den tyske hær under andre verdenskrig. En slik som er avbildet under.

Det er ikke min spesifikke rifle jeg holder i bildet over, det er faktisk den som ligger bak. Da jeg overtok den hadde den en gammel, sliten sporter-stokk på seg, men den startet som sagt livet på samme vis som den jeg holder her. Mange av disse riflene som ble liggende igjen etter krigen ble tatt i bruk i Hæren, men kort etter konvertert til .30-06 og gitt til Heimevernet da vi adopterte M1 Garand. På ett eller annet tidspunkt hadde den blitt kamret om til .308 Winchester (som noen få ble da dette ble NATO standard) som jeg ikke fant ut før jeg allerede var på skytebanen og hadde kjøpt .30-06 skudd. Ugh...

Men jeg trengte et våpen til både trening og jakt og tenkte det var en fin anledning til å ha et eget våpen jeg kunne bruke på skytedagene vi skulle ha. Prosjektet startet enkelt nok med den simple endring at jeg ville ha den i .30-06 og en ny stokk. Det ene førte til det andre og plutselig er det eneste originale igjen på børsa låsekassa og sluttstykket. Som er blitt tungt modifisert de og.

Det har vært en lang og lærerik reise med oppturer og nedturer.

 

Kamring og dreiing av nytt løp

Aller først fjernet jeg selvsagt løpet. Det satt godt fast så låsekassa måtte varmes opp for å løsne det.

Den originale løpsprofilen er fler-steget, eller trappet, og personlig er jeg ikke noen tilhenger av designet. For ikke å nevne at det ikke lar seg gjøre å kammre om et .308 løp til .30-06 uten å fjerne en del av kammer-enden siden tykkelsen på .30-06 hylsen er mindre der den treffer .308 skulderen enn .308 er, slik at det ville dannet seg en grop i kammeret her som ville gjort at hylsen ville blitt deformert/sprukket/satt seg fast ved avfyring.

Det er ingen spesiell grunn til at jeg ville ha .30-06 annet enn at jeg liker kaliberet og det en kraftig og allsidig patron. Riflen skal brukes til storviltjakt og langholdsskyting så et relativt grovt kaliber føltes riktig. Det går jo mye på følelser dette; og ikke nødvendigvis på tross av fakta.

Jeg fikk tak i en hylse som er et "adapter" som tilpasses diverse låsekasser og omgjør den til en delvis standardisert festemetode slik at våpenet blir et 'systemvåpen', altså at brukeren kan enkelt skifte løp dersom et annet kaliber kreves eller ønskes brukt i samme våpen.

Kammeret er selvsagt fortsatt i løpet, men det stikker på en måte ut av løpet og tres inn i hylsen. På bildet over er hylsen satt på feil vei for å sjekke pasning. Denne krevde litt å lage; selve pasningen vist over hadde kun 0,03 millimeter unilateral negativ toleranse.

Over kan vi se hylsen skrudd på løpet og gjenger slått i hylsen for å passe i låsekassen (under).

Deretter brotsjes (les: rømmes) kammeret med hele smæla skrudd sammen.

Etter inspeksjon og testskyting av det nye kammeret viste det seg at jeg hadde fått en rivning i metallet under prosessen som hadde etterlatt seg et dypt sår inne i kammeret og som deformerte patronen som vist på bildet under. Dette gjorde den svært vanskelig å få ut, men det gikk heldigvis med bare litt makt. Den dårlige nyheten var jo selvsagt at jeg måtte gjøre alt på nytt, inkludert å lage det presise hylse-partiet om igjen også... 

Men andre gangen gikk det knirkefritt og resultatet ble tilfredsstillende.

Under dreier jeg ned det nye, nå ferdig kammrede, løpsemnet fra Lothar Walter. I første omgang kun ren masseavvirkning for å tynne løpet.

Konusdreiing for å fullføre løpsprofilen. Her brukte jeg brille for å minimere vibrasjoner og optimalisere maskinert overflatefinhet før puss.

Løpet behøver ikke være så veldig tykt, men et tykkere løp bidrar til økt presisjon. Jeg lot løpet være ganske tykt fordi jeg vill ha høy presisjon og løpet skulle uansett flutes for å fjerne noe vekt. Den koniske profilen på løpet bidrar til et slankere og helhetlig visuelt inntrykk med tanke på perspektiv.

 

Fluting

Jeg flutet løpet, hovedsakelig for utseende, men også for å redusere vekt. Dette var stort sett en langsom og kjedelig prosess siden matehastigheten var så lav. Når ett kutt tar ca 15 min og 5 fluter på 3-4 kutt per flute... det tok tid. Men verktøyet var flunkende nytt og prosessen ny for meg så jeg tok det heller litt med ro enn å forhaste meg. Finishen på flutene ble også veldig bra.

På tross av den langsomme prosessen var det en svært interessant og lærerik prosess. I bildet over klokker jeg inn løpet slik at kuttsiden er parallell med X-aksen. Siden løpet er konisk må det spennes opp litt på skrå for at flutens tykkesle skal bli jevn. Det ble spent opp i et delehode og en senterspiss med en vinkelplate som støtte bak. En liten innretning med et spor i satt rundt løpet og ble brukt for å trekke mot vinkelplaten og holde det stramt på plass. 

Det viktigste her er at flutene blir symmetrisk, så den første fluten må stilles inn i forhold til hvordan løpet sitter i låsekassa. Jeg monterte det fast i rifla og merket opp med en av de andre fresene hvor midten/toppen av løpet var. Deretter monterte jeg det opp i oppspenningen over og brukte en høyderissemåler/rissefot får å vise midten av løpet og roterte delehodet til den rissede linjen og høyderissemåleren møttes. Jeg gjorde også noen små testkutt for å verifisere at verktøyet fulgte denne linjen. Nå skulle den første fluten teoretisk sett bli midt oppå løpet.

Jeg lagde som nevnt 5 fluter, av den enkle grunn at det gjorde at jeg slapp å flytte vinkelplaten for hver rotasjon, siden med et oddetall fluter vil løpet alltid hvile mot vinkelplaten på en ribbe og ikke på en flute. Jeg er av den tro at et partall fluter, som er fullstendig symmetrisk, vil gi et stivere løp siden den totale tykkelsen mellom ribbene blir større enn med et oddetall fluter, men det skal tydeligvis ikke utgjøre så stor forskjell.

Et annet viktig moment å tenke på er hvordan løpet er tilvirket. Hvordan det er laget, om det er varmhamret eller kaldhamret eller om riflingene er påført i etterkant med en "button" som dras gjennom pipa kan påvirke hvordan løpet reagerer på å bli flutet. Det kan hende det innfører spenninger ved å lage en hel dyp flute på en gang før man tar den neste, eller det kan gå fint, men man kan trenge å ta alle kutt av samme dybde før man øker kuttdybden for å opprettholde rettheten i pipa, men det var heldigvis ikke et problem for meg med dette løpet.

 

Låsekassen

Mye ble gjort med selve låsekassen og sluttstykket.

Mest interessant av alt er vel en idé jeg fikk av mine mentorer på XXL. Mauser-låsekassen er relativt fleksibel og svak p.g.a utsparingen til tommelen som er der for at våpenet skal kunne bli ladet med stripper-clips. Så tanken er å sveise igjen dette hullet for å stive opp kassa. Hvilket jeg gjorde. 

Jeg lagde en bit av vanlig maskinstål som passet sånn høvelig greit i hullet med litt overmål og MIGet den fast utenpå og inni. Deretter freste jeg vekk det verste og avsluttet med fil. 

Utenom det ble det tilvirket en ny picatinny-skinne som jeg har skrevet om tidligere og nye monstasjehull boret og gjenget.

Nytt avtrekk ble installert, Timney FWD med avtrekkersikring. Siden jeg nå hadde sikring på avtrekkeren ble den originale direkte sikringen på shroud'en fjernet og ny shroud ble kjøpt. Dette er riktignok litt mindre sikkert, men fortsatt sikkert nok.

Utdrageren og bolt-stoppen ble blå-anløpt og jeg monterte en ny selvdesignet hevarm.

Jeg kjøpte også Superior Shooting speedlock-system som er et tennstempel av titan eller stål og aluminium med en ny fjær i krom-silikon legering. Dette kan senke tiden fra avtrekk til skuddet går med flere millisekunder.

 

Rekylbrems

Jeg lagde min egen rekylbrems som er uthulet og plugget igjen for å fange og redirigere så mye av munninggassene som mulig.

Den fanger gassene og omdirigerer dem ut til sidene, oppover og bakover. Også ser den tøff ut.

 

Cerakote

Da alt var ferdig var det på tide å cerakote løp og låskasse, samt andre smådeler. Når det kom til løpet ville jeg ha blanke fluter, så disse ble maskert og endene av løpet plugget.

Cerakote og Durakote er en form for lakk som inneholder keramiske partikler og herder over flere dager og produserer et motstandsdyktig og slitesterkt lag. Det er viktig ved påføring at det som skal sprayes er glass-/sandblåst, avfettet og tørt. Det påføres i èn omgang med mange lette lag, mye som annen pulverlakkering.

Nydelig.

 

Stokk og bedding

I utgangspunktet hadde jeg tenkt til å lage min egen stokk i tre, men siden jeg satte på skinne på låsekassa ville det bli knotete å fylle på ammunisjon i magasinet, så jeg ville ha en løsning med uttakbare boksmagasin. Det var noen greie løsninger der ute og planen var å benytte AICS magasiner med en long-action underbeslag, men det viste seg å være en veldig vanskelig kombinasjon å finne for Mauser. Så jeg endte opp med en AA98, en glassfiber-forsterket polymer-stokk fra Archangel. Denne har mange justeringsmuligheter, er spesialtilpasset M98 og kommer med magasinløsning og et magasin. Jeg kjøpte også to ekstra magasiner, fordi hva er poenget med boksmagasinsystem med bare ett magasin?

Men selv om den kommer ferdig tilpasset var det ikke bra nok for meg. Ikke bare måtte jeg utvide løpskanalen til å passe det nye løpet mitt, jeg ville også bedde stokken. Det vil si å fylle i et epoxyharpiks i stokken for så å presse og skru fast låsekassa med dette stoffet i mellom og la det herde. Dette vil lage et eksakt avtrykk av låsekassa i stokken og den vil ligge godt og solid og vil ikke kunne røre på seg. Det vil også hindre at man drar inn spenninger i låsekassa når man skrur den i stokken som igjen vil bidra til økt presisjon.

Første steg er å rufse opp innsiden der epoxyen skal sitte. Det er kun nødvendig å bedde rundt festepunktene, dvs. rundt skruene, men det må der beddes helt opp til kanten av stokken og spesielt i rekylopptaket, vanligvis den utstikkende flaten ved den fremste skruen.

Det er viktig å lage dype og ru spor her slik at beddingen fester seg godt til stokken. Mange små ikke-parallelle kriker og kroker som limet kan flyte inn i lager et godt feste.

Deretter smøres låsekassen, skruene og alt annet som ikke skal ha lim på seg inn med f.eks. skokrem slik at limet ikke fester seg til annet enn stokken. Så blandes beddemassen som er en blanding av lim og herder, i dette tilfellet i et forhold på 1:4 herder/lim. Vi blandet her 20g lim og 5g herder. Krydre med litt svart fargepulver etter smak. Finhakk en håndfull isolasjon og ha i. Rør godt.

Man ønsker en konsistens slik at det ikke flyter og drypper av rørepinnen. Glassfiberet gir limet styrke og struktur.

Massen legges på og presses godt ned og inn i alle de tidligere nevnte kriker og kroker. En liten rygg av masse legges midt på for å hindre at det fanges luftbobler og som automatisk presses ut fra midten og sørger for en jevn spredning.

Man skrur så fast låsekassen, men ikke så hardt at de spenningene vi prøver å unngå blir bygget inn i beddingen. Så vi strammer til det stopper og så løsner opp til låsekassen ikke stiger mer.

Etter at det er herdet kan de største ansamlingene pirkes av og så kan mekanismen røskes ut av stokken.

Skruehullene kan trenge å bores opp siden det har samlet seg beddemasse i skruekanalene som kan gjøre de vanskelig å få inn skruene ordentlig.

 

Voila!

Annet tilbehør som er brukt:

  • Accu-Tac LR-10 tofot
  • Accu-Shot Mid-Range monopod
  • Vortex Viper PST 6-24x50 EBR-1 MRAD kikkertsikte
  • Daniel Defense QD sling mount
  • Magpul MS4 Dual QD GEN2 reim

Nå er jeg fornøyd og veldig glad! Jeg gleder meg til å ta den med på skytebanen og virkelig sette både den og meg på prøve.

Dreieverktøy og skjær

To av oppgavene vi har hatt er å slipe hurtigstål-skjær til dreiebenken. Vi skulle slipe et gjengeskjær og et kronestål. Begge er formverktøy som påfører en profil i arbeidsstykket:

Gjengeskjæret over ble slipt for hånd uten noen form for støtter og sjekket med et slipelære.

Skjæret er 60° slik at hver kuttside er 30° fra senterlinjen.

Klaringsvinklene er like på begge sider og skjæret har ingen innebygd vinkel siden heliksvinkelen for 60° gjenger er så liten at den kan ignoreres.

Dette verktøyet profilerer i X-retningen.

02.jpg

Kronestålet er et formverktøy på den mer tradisjonelle måten i det at den påfører en unormal form på arbeidstykket. Dette verktøyet har flere bruksmåter, men hovedbruken er å krone munningen på løp som jeg har snakket om tidligere. Verktøyet settes slik at spissen er inne i løpet og toppen av buen ligger midt på godset mellom innsiden og utsiden. Verktøyet føres så inn langs Z-aksen og påfører profilen på munningen. Dette vil da resultere i en klassisk jakt-kroning. Verktøyet kan også beveges litt frem å tilbake på X-aksen for å endre kroneprofilen. Dersom en 11° kroning ønskes kan tuppen av skjæret brukes til dette.

Weatherby-Vanguard-308Win-0006-crown.jpg

Jeg tenkte jeg skulle benytte anledningen til å skrive litt om typer skjær og bruksområder, fremstilling og gjenkjenning.

Det finnes hovedsaklig to typer dreieverktøy; hurtigstål og hardmetall.

Hurtigstål-blanks

Hardmetall-inserts

Hurtigstål

Hurtigstål er et høy-legert stål med et høyt karboninnhold som gjør det svært hardt, men sprøtt. Det tåler høyere temperaturer enn vanlig høy-karbon stål uten å miste hardheten sin, vanligvis opp til 500-600 °C. Denne motstandsdyktigheten til temperatur heter "red hardness" på engelsk. Det kalles hurtigstål fordi det er i stand til å bearbeide metall raskere og ved høyere turtall enn annet renere stål. Det er tilført stoffer som lager legeringer som forbedrer egenskapene og levetiden til verktøyet. De vanligste tilføringene er wolfram (W), molybden (Mo), krom (Cr), vanadium (V), kobolt (Co), mangan (Mn) og silikon (Si).

De to vanligste typene hurtigstål kategoriseres i to grupper: T-type og M-type, for hovedsakelig Tungsten(wolfram)-tilføringer og Molybden-tilføringer respektivt. T1 er et hovedsakelig wolfram-legert stål mens M2 er et hovedsakelig molybden-legert stål. Tallet bak bokstaven relaterer ikke nødvendigvis til noe spesielt med den ståltypen, det er først og fremst for å skille dem fra hverandre.

Det finnes uendelig mange varianter og typer hurtigstål, men de vanligste er oppført i tabellen under:

high_speed_chart.jpg

Som vi kan se på tabellen har M serien mye molybden og T serien mye wolfram, men wolfram er den klassiske og tidligere vanligste tilføringen, så M serien har mer wolfram enn T serien har molybden. Kobolt kan også tilføres for å øke levetiden og temperaturmotstanden, dette er da ofte opplyst på stålet. Vanlige benevnelser for dette er HSSE, HSS-E eller HSS-Co.

Wolfram er et tungt og sterkt, sjeldent metall, og har det høyeste smeltepunktet av alle elementer som er oppdaget, ved 3422 °C. Bedre kjent som Tungsten i engelsktalende land etter svensk tung sten, hvem skulle trodd... Wolfram brukes til mye rart, men mesteparten av verdens wolfram-utvinning går til produksjon av wolfram-karbid som brukes i hardmetall.

Molybden er et annet sterkt metall med et veldig høyt smeltepunkt ved 2623 °C. Det binder seg lett og lager harde og sterke bindinger i legeringer. Molybden opplever veldig liten termisk ekspansjon ved høye temperaturer.

Hurtigstål har stort sett en hardhet på over 60 HRC opp til ~67 HRC.

 

Sliping av hurtigstål

Hurtigstål brukes i veldig mange sponfraskillende verktøy, som bor, gjengetapper, freser, rømmere, brotsjer, etc. Men hurtigstål beregnet for bruk i dreiebenker leveres som blanke, uformede biter i mange ulike størrelser og former.

Fordelen med å bruke slike hurtigstål-blanks er at det kan slipes og formes til det formålet man behøver og kan skjærpes når det blir sløvt. 

Et typisk hurtigstål-skjær kan se slik ut:

Disse kalles hovedsakelig "single point cutters" på engelsk, ettersom det bare er ett punkt eller side som kutter, i motsetning til f.eks. et bor der det er to sider som kutter samtidig.

Det finnes mange ulike former etter hvilken operasjon som skal utføres:

Hvilket verktøy som er beregnet for hvilken retning og hva det eventuelt heter kan være litt forvirrende, men som en regel kan vi si at dersom man står mot dreiebenken er høyre-verktøy ikke verktøy som peker mot høyre eller har kuttsiden på høyre, men verktøy som er beregnet på å bevege seg fra høyre mot venstre, altså har de den kuttende siden på venstre.

 

Når det kommer til å faktisk slipe dem er det en del ting som er viktig å forstå:

Skjæret må selvsagt ha klaring fra alle sider bortsett fra kuttsiden slik at skjæret faktisk kan føres inn i materialet uten at noe annet enn kuttsiden treffer arbeidsstykket. Disse formene kan være komplisert å slipe siden man må til tider holde styr på 3 vinkler samtidig.

Det er egentlig ingen fasit på hvilken rekkefølge disse flatene bør slipes i, men som hovedregel kan vi si at:

  • Endeklaringen slipes først. Dette er første del av spissvinkelen: endeklaringen og endeklaringsvinkelen, som slipes samtidig:

Disse to vinklene holdes samtidig. Stålet føres rundt i sirkel mens det holdes stødig til hele den slipte flaten er uniform. Stålet kan også presses inn i steinen og holdes der, men vær obs på at endeklaringen da vil få en slak kurve som er lik radien til slipesteinen og vil ikke bli like sterk.

PROTIP: Det er en fordel at slipemerkene går langs med dreieretningen og ikke lager "fartsdumper" for sponet eller arbeidstykket.

Resultat:

  • Deretter slipes andre del av spissvinkelen og første del av eggvinkelen; klaringsvinkelen og innstillingsvinkelen.

Jeg pleier å holde hele stålet litt på skrå sett forfra mot slipesteinen, vanligvis i samme vinkel som endeklaringen. Ikke egentlig nødvendig, men det gjør slipingen på klaringsvinkelen parallell med endeklaringen, som jeg liker.

PROTIP: Spissere tupp (spissvinkel) vil tåle mindre og gi grovere overflate, spesielt uten neseradius, men kan være nødvendig for å bl.a. lage skarpe innvendige hjørner.

Resultat:

  • Så slipes andre del av eggvinkelen; sponvinkelen og hellingsvinkelen. Denne slipes ofte også på skrå på samme måte som over slik at slipingen blir parallell med endeklaringsvinkelen.

PROTIP: Skarpere sponvinkel og hellingsvinkel vil stort sett føre til en mer 'skjærende' operasjon i stedet for en 'rivende' bevegelse, som vil gi finere overflate. (Kjølevæske vil også drastisk øke overflatefinheten fordi det bl. a. skyller vekk mikro-spon som riper opp overflaten.)

Resultat:

  • Etter dette gjenstår kun å slipe eller hone inn neseradien:

Et grunnleggende og enkelt dreieskjær.

PROTIP: En enkel sponbryter er også å anbefale: En liten grop på tvers av sponvinkelen eller hellingsvinkelen vil øke den effektive eggvinkelen og bidra til at sponet krøller seg og bryter av uten å bli for langt, men denne kan også begrense bruken til skjæret. Sponbryteren burde bli trangere jo lenger vekk fra skjærpunktet den går.

Det kan også lønne seg (for den siste prikken over i'en) å hone eggen med en slipesten eller lignende for en knivskarp egg. Hvis DU skjærer deg på den kan du vedde på at den vil skjære stålet som smør. 

 

 

Hardmetall

Hardmetall er egentlig ikke et metall, det er keramisk bundet wolfram-karbid. Karbider er stoffer der karbon binder seg med andre elementer i veldig strukturerte og solide former. Hardmetall blir ofte omtalt kun som "karbid", men det er teknisk sett en forenkling av "cemented tungsten carbide" ettersom "karbid" som sagt er et fellesbegrep for flere andre materialer som f.eks. titankarbid og tantalkarbid som også brukes til å lage dreieskjær.

Wolfram-karbid (WC) er et veldig hardt materiale, nesten like hardt som diamant, men det er vanskelig å forme. Hardmetall-verktøy er derfor wolfram-karbid blandet med et bindemiddel som sammen sintres, som er en prosess der materialet presses sammen og varmes ved høy temperatur, men uten at det blir flytende. Det lages derfor mange små granuler som pakkes tett sammen og binder seg sammen med hverandre ved hjelp av et middel, vanligvis kobolt.

Denne prosessen smelter det delvis og gjør at det binder seg godt i veldig sterke formasjoner. Derav "cemented".

De tre hovedstadiene ved sintering.

Andre materialer som brukes i produksjon av dreieskjær er bl.a. syntetisk diamant og bornitrid, men sementerte karbider er vanligst.

 

Når vi snakker om hardmetall tenker nok de fleste på utbyttbare karbidskjær (indexable carbide inserts) (høyre), men de finnes også som fastmonterbare hele karbid-biter som varm-loddes fast til en bit med hurtigstål (under.)

Z1x5uupcpEx--n.jpg

Disse verktøyholderne (brazed carbide tooling) kan være tricky å lage så de fåes kjøpt i ISO standarder:

Noen av disse fåes også i venstre og høyre konfigurasjon. Karbid-bitene brukt her har ganske enkel geometri og er relativt billige, men mer komplisert å skifte ut og er derfor ikke så veldig vanlig, spesielt ikke hos store industrielle fabrikanter.

Mer utbredt, blant både industri og hobbyister, er vendeskjær:

Disse har mange fordeler som at de:

  • Arbeider ved høyere skjærehastigheter som gjør at de kan kjøre på økt matehastighet og gjør dem godt egnet til "high speed machining" (HSM) / "high velocity machining" (HVM).
  • Har relativt lang levetid, kombinert med at de kan løsnes raskt og vendes eller vris til en ny kuttside på samme skjær.
  • Kan raskt byttes ut når hele skjæret er brukt opp som bidrar til mindre 'downtime' for maskinen eller firmaet.
  • Gir stort sett finere overflate rett fra maskinen enn HSS.

Men det er også ulemper:

  • De er ikke like egnet til å gjøre avbrutte kutt, som hvis man dreier over borrede hull eller lignende, karbid liker et konstant og jevnt trykk, men de tåler til gjengjeld veldig mye av det.
  • De er ikke like skarpe som HSS kan bli, som kan gjøre det utfordrende å ta kutt med svært liten kuttdybde med god overflatefinhet. Hardmetall foretrekker ofte å ta litt mer materiale av gangen.

En viktig ting med hardmetall er at man trenger en spesifikk holder til et spesifikt skjær, man kan ikke, i motsetning til HSS, bruke en hvilken som helst holder til alle skjær. Bruker man WNMG skjær må man bruke WNMG holder (f.eks. en MWLNR).

Typer skjær og hvordan de defineres er selvfølgelig en ISO standard ♥ ISO 1832:

Den første bokstaven definerer fasongen på skjæret.

Det er feil å si at en av disse definerende bokstavene er viktigst siden alle er like viktige, men... dette er den viktigste. Du får ikke bestilt noe med bare denne, men det er en start.

Disse er relativt logisk organisert der bokstaver ofte er basert på den første bokstaven i formen, sånn som H, O, P, S, T, R.

Når det kommer til alle de forskjellige variantene av grader på rombe og parallellogram er man bare nødt til å slå det opp.

I eksempelet over er formen W et såkalt 'trigon' som i bunn og grunn er tre 80° trekanter satt sammen til en likesidet trekant-form.

Den andre bokstaven representerer endeklaringen på skjæret.

Akkurat som med hurtigstål så blir skjæret svakere jo mer endeklaring det har, men det kommer ofte til på flere steder og kan jobbe på ting med større diameter (eller kutte høyere over senter).

Den største klaringen er G på 30° og den minste er N som er helt rett / flat med 0°. Disse N-skjærene har ofte endeklaringen bygget inn i holderen:

 

Bokstav nummer tre definerer toleransene til skjæret. Finere toleranser koster selvsagt mer.

Vi er enda ikke kommet til størrelsen på skjæret, det er dekket av posisjon 5 og 6, men det er viktig å oppgi toleranseklassen til skjæret. Dette er da standardisert i følge tabellen over.

Toleransene er mye av det samme, men varierer på hvilket punkt av skjæret som er mest nøyaktig (tykkelse, total størrelse, lengde til egg).

Med toleranse M ser vi at toleransene er relativt store, der total størrelse og lengde til egg er viktigst for denne toleranseklassen. Disse toleransene kan være spesielt viktig i CNC-maskiner der skjæret byttes ut og foventes å produsere like deler som det gamle skjæret uten rekaliberering.

I ANSI standarden er dette mye det samme, men oppgitt i tusendels tommer.

 

Den fjerde bokstaven representerer flere ting; festemåte og sponbryter.

Herunder er alle variasjoner av følgende muligheter: sylindrisk hull, forsenket hull (1 eller 2 sider, samt flere typer forsenkning), sponbryter (1 eller 2 sider), ikke hull, ikke sponbryter.

Skjær med endeklaring noe annet enn 0° kan vanligvis ikke vendes og har derfor ikke noen sponbryter eller forsenkning på andre siden. Skjær uten forsenket hull (kun sylindrisk) er ofte festet til holderen med en låsepinne og/eller klemme.

Nå over til det som virkelig kan frustrere og forvirre: De første to tallene i posisjon 5 bestemmer størrelsen til skjæret ved Inscribed Circle (IC) som er den største sirkelen som får plass i skjæret rundt senter uten at noen del av sirkelen stikker utenfor OG/ELLER lengden av kuttesiden (L).

Alt dette er som sagt egentlig en ANSI standard som er blitt slurpet opp av ISO, og det har jeg ikke noe problem med, det er en grei standard, men da ISO tok den i bruk var produkter allerede etablert i... ikke tusendels tommer, NEIDA, antall 1/16 tommer som går i sirkelen... og ISO valgte derfor å definere noen nye størrelser i millimeter, men også beholde disse tallene i tabellene som standard. Så selv om disse tallene egentlig burde være en metrisk verdi i millimeter, så er de ikke alltid det og det er derfor spesielt viktig at denne verdien slås opp.

Så i eksempelet over, der den innskrevne sirkelen i skjæret skal være en 06 så vil det si 6/16", som er 9,525 mm.

Kan vi aldri få ha en logisk og uniform standard? Man mister litt motet...

Det er en morsom historie angående hvordan Amerika nesten gikk over til metrisk da det enda var en ung nasjon. I 1793 fant regjeringen av de nylig forente stater ut at de trengte et nytt standardisert målestystem ettersom statene fremdeles var relativt fragmentert og brukte forskjellige systemer som gjorde mellomstatlig handel og samarbeid vanskelig. Så på oppfordring av Thomas Jefferson, som også likte 10-tallssystemet, ble en fransk vitenskapsmann ved navn Joseph Dombey sendt over Atlanteren med en kobberstang som var ca. 3 fot lang og en kobbervekt som veide ca. 2 pund. Dette var selvsagt fysiske representasjoner og standarder av det, på den tiden under utvikling, metriske system som var 1 meter og 1 kilo respektivt. Han skulle hjelpe Jefferson å overtale kongressen til å adoptere det metriske system. Men på vei over havet møtte de på en storm som sendte skipet deres lengre sør, nærmere Karibien. Der ble han og skipet tatt til fange av britiske pirater som prøvde å kreve løsepenger for Dombey, men dessverre døde han i fangenskap. Tingene han hadde med seg var ikke av interesse for piratene så de ble auksjonert bort og etterhvert fant kiloet veien til en amerikansk landmåler ved navn Andrew Ellicott. Det gikk i arv til 1952 da etterkommere av Ellicott donerte det til det som kom til å bli NIST (National Institute of Standards and Technology). 

Det er riktignok ikke det eneste forsøket på å importere rasjonalitet til Amerika, men det kunne gjort en forskjell. We will never know.

 

Tallene i posisjon 6 representerer tykkelsen på skjæret. Mye av det samme gjelder her som i posisjon 5, men vi har mer frustrasjon i vente.

I eksempelet over er skjæret definert som 04 som MAN SKULLE TRO vil tilsi 4/16" men det blir 6,35mm som ikke stemmer med denne fabrikantens tabeller, så hva er det som skjer? Det var noens glupe idè at når det kommer til tykkelse så skal det brukes tomme-verdier, men tallet skal representere den nærmeste 1/16 tomme-verdien der det første tallet i millimeter-konverteringen blir 4.

3/16" blir 4,76mm så der har vi svaret. Kjempelogisk.

Avvik fra denne regelen desgineres med en bokstav i stedet for 0, vanligvis T.

Det er viktig å notere seg at tykkelsen måles fra bunnen av skjæret og opp til skjærepunktet/eggen.

Den siste pålagte informasjonen, posisjon 7, representerer neseradien til skjæret. Her er det heldigvis litt mer logikk inne i bildet og de to tallene i denne posisjonen er direkte overførbare til en radius i millimeter. 

I eksempelet over er tallene 08 som betyr at neseradien er 0,8mm.

Man tenke seg at det mangler et komma mellom dem; f.eks. så er 24 2,4mm radius.

For sirkulære skjær der IC = neseradius, designeres dette med 00 hvis størrelsen er konvertert fra tommer og M0 dersom verdien på størrelsen er metrisk.

Den første valgfrie bokstaven, posisjon 8, definerer hvordan eggen er formet og hvordan den er behandlet. Om den er slipt, honet, lakkert, sintret, eller på annen måte bearbeidet.

Men det representerer først og fremst formen på eggen.

Bokstaven i posisjon 9 representerer hvilken hånd eller retning skjæret er ment til å bevege seg i.

 

Posisjon 10 definerer ytterligere formen på eggen dersom skjæret ikke har en enkel tupp med neseradius:

Dette oppgis hovedsakelig dersom posisjon 7 er bokstaver, og slike skjær har vanligvis skrå og skarpe kanter (ingen hjørneradier).

Tabeller hentet fra Mitsubishi Carbide. すみません

Overflatefinhet

Overflatefinhet er et bredt tema og krav til dette omhandler tilvirkningsmetoder, sluttprosesser, definisjoner og toleranser.

Ved design og produksjon spiller overflatefinhet en betydelig rolle for funksjonen og levetiden til komponenter og maskiner.

Det er f.eks viktig at deler som skal være i kontakt med hverandre, og spesielt dersom de skal gli eller på andre måter være i bevegelse under kontakt, har fin overflate for å sikre så lav friksjon som mulig.

Kulelagerdelen til høyre har krav til fin overflate for å sikre korrekt og god funksjon og vi kan se forskjellen mellom grovforming (øverst) og presisjonssliping og polering (nederst).

Økt glans og refleksjon kommer av at fine overflater er mer uniform i hvor de kaster lyset, i motsetning til grove overflater som kan spre lyset i flere retningen som får det til å se mer diffust ut.

Definisjonen av en overflates natur er tredelt:

  1. Legge (Bearbeidingsretning)
  2. Ruhet
  3. Bølgethet

En annen måte å se dette på er at bølgethet er makro-overflate og ruhet er mikro-overflate.

En fjerde faktor som kan påvirke overflater er enkelte feil, hakk, hull, groper eller riper. Dette regnes vanligvis ikke som en del av den totale overflatefinheten, men har allikevel stor betydning og kan ha utslag for funksjonen.

Mange ulike overflater er ønskelig basert på komponentens funksjon og som i eksempelet over er det svært viktig at bærende overflater i bevegelse, som i kulelagere, har en fin overflate for lav friksjon og lav slitasje. Andre funksjoner som krever ulike overflater:

  • Termisk konduksjon - Krever maksimal kontakt mellom to overflater. Dette fører til speilblanke og rette overflater.
  • Dekorasjon - Varierer veldig mellom ønsket utseende, men krever ofte spesifikke og uniforme legger og sluttprosesser.
  • Adhesjon - Krever maskimal kontakt mellom overflate og substans som lim eller maling, derav grov, men uniform overflate.
  • Friksjon - Dersom stor friksjon ønskes kreves det grove overflater med høye topper og lav kontaktoverflate.
  • Forsegling - Krever fin overflate og lav bølgethet for å oppnå maksimal kontakt mellom de forseglende overflatene, samt lav slitasje.

 

Legge

Legge er en måte å definere topografien av en overflate og hvordan den er arrangert, sett vinkelrett ned på overflaten. Praktisk sett er det retningen på bølgeprofilen som følge av produksjonsmetoden brukt.

poor_finish-n.jpg

Over er et eksempel på ulike typer legge, vertikal (A) og sirkulær (B). Denne typen legge er normalt for dreiing.

Til venstre er et eksempel på en overflate som er bearbeidet med fresing, mest sannsynlig en planfres, og viser en blanding av sirkulær og krysset legge. Øverst på bildet er et skille mellom de to passeringene som vil bidra til at det totale legget blir horisontale striper med kryssede sirkler. Dette kan føre til en ujevn oveflate.

Legge kan også beskrives selv om vi ikke kan se mønsteret eller det ikke er videre tydelig, men det fortsetter å representere i stor grad tilvirkningsmetoden og hvordan verktøyet har bearbeidet materialet.

Kompliserte legger kan gjøre det vanskelig å bestemme finheten til en overflate ettersom overflatefinhet i stor grad er en visuell og taktil sammenligning mellom overflaten og forhåndsdefinerte overflatetolker, ofte kalt en My som i den greske bokstaven µ for 'mikro', og kan se slik ut:

 

Ruhet & Bølgethet

Ruhet måles vanligvis i Ra (Roughness Average) som er den gjennomsnittlige høydeforskjellen mellom mikroskopiske daler og topper i overflaten. Ra måles i mikrometer (µm) eller mikrotommer (µin / µ"). Dette kan også kalles AA eller CLA som står for Arithmetic Average og Center Line Average respektivt.

Som sagt så kan ruhet og bølgethet sees på som to størrelser av samme mål, kun i ulik skala, men der er ikke nødvendigvis slik.         Ruhet sammenlignes ofte med sandpapir, der finere sandpapir føles gjevnere men sandpapiret trenger ikke å være plant, det kan bukte seg og ha bølger men fremdeles ha en fin overflate. De to definisjonene brukes ofte sammen for å definere en profil av en overflate men de har ulike enheter og bruk. Det kommer ann på testlengden av målingen, men de brukes sammen for å definere den gjennomsnittlige ruheten over en gitt testlengde.

Det er mange verdier å ta hensyn til når det kommer til måling og kvantifisering av overflatefinhet og om hvordan dette skal måles strides de lærde:

Det hovedsaklig to enheter, Ra og RMS (Root Mean Square) som er en annen måte å kalkulere ruhet på, men bruker de samme målingene og rådataene.

  • Ra (Roughness average) - Mest vanlig enhet, gjennomsnitt
  • Rz / Rmax (Roughness total) - Totale høyden mellom høyeste topp og laveste dal innen en testlengde
  • Rp (Roughness peak) - Høyeste topp
  • Rv (Roughness valley) - Laveste dal

Ra og Rz og andre benevnelser kan brukes individuelt og hvilken som brukes er mye opp til industristandarden som kan variere mellom industrier. Selve matematikken bak alt dette er noe utenfor hva jeg har behov eller ønske om å gå i dybden av, men Ra kalkuleres hovedsaklig slik:

Man velger en linje som skal representere den teoretiske fysiske størrelsen til delen og regner ut medianen fra den. Noen måter å regne dette på snur også dalene rundt slik:

Ruheten kan også oppgis som et ISO N-nummer fra N1 til N12 der N1 er finest.

Denne måten å måle ruhet på, den mest normale, er ikke nødvendigvis det på grunn av at det er den beste måten, men det kommer mer fra gammelt av, men den er helt kurant.

Noen problemer som Ra og lignende måter å oppgi ruhet på er at det er vanskelig å skille mellom topografier som er toppdominert eller daldominert og andre rare former.

Bølgethet brukes så vidt jeg fortstår ikke innen ISO standardene lenger.

For å måle dette finnes det mange forskjellige apparater, en portabel en kan se slik ut:

Normale overflatefinheter man kan forvente av ulike bearbeidingsmetoder:

Toleransesetting av overflatefinhet beskrives med en 60° V med et langt bein, på den overflaten toleransen gjelder:

En åpen V uten horisontal strek betyr ingenting alene. Dersom materiale må fjernes markeres dette ved å lukke V-en med en strek slik at det blir en trekant. Dersom dette ikke er tillat og flaten enten ikke skal gjøres noe med eller overflaten bare kan forbedres ved tilleggingsprosesser markeres dette med en sirkel inne i V-en.

Dersom en spesifikk produksjonsmetode kreves markeres dette med en lengre horisontal strek på punkt b.

Over er de parametriske symbolene for bearbeidingsretning for punkt d.

Symbolet settes på flaten eller dimensjonen som gjør at den representerer korrekt flate i forhold til projiseringsplanet.

Toleranser og pasninger

Toleranser

I denne høyt industrialiserte verden der forskjellige firmaer produserer og leverer deler til andre produsenter av alt mellom himmel og jord, er det viktig at man kan stole på at ting passer sammen.

18363588_ml-1-.jpg

Når man produserer en del er det svært vanskelig å opprettholde teoretiske presisjonsmål slik den ble designet. Noe som er f.eks "10mm" er i realiteten ikke 10mm, men 10,01 eller 9,98 millimeter. I mange tilfeller vil dette være akseptabelt presist, og dette varierer voldsomt etter hva bruksområdet på den produserte delen er. Vi kan jobbe oss mot nøyaktig 10mm til vi blir grønne i trynet, så på ett eller annet tidspunkt må vi bare si oss fornøyd med delen og si at det er nærme nok.

fuck-yeah-close-enough.jpg

Disse verdiene er oppgitt av tegningen eller designeren/ingeniøren..

Toleranser kan oppgis på forskjellige måter:

 

Lik bilateral toleranse oppgis med et +/- tegn og indikerer at den angitte toleransen gjelder i begge retninger slik at det totale tillatte avviket her er 0,2.

 

 

Ulik bilateral toleranse oppgis ved at tillatt avvik angis for hver retning. Dette brukes når toleransene er ulike i hver retning. Tegningen viser her et totalt tillatt avvik på 0,3.

 

 

Unilateral toleranse betyr at dimensjonen kun har toleranse i en retning og indikerer som oftest at dette målet absolutt ikke kan være over/under det som er angitt. Tegningen viser et totalt tillatt avvik på 0,1, med ingen mulighet for å overstige 40.

 

 

Grensemål indikerer absolutt maksimalt avvik på dimensjonen og oppgis ved tall som har toleransen "bygget inn". Tegningen viser her et spillerom på 0,3 der dimensjonen kan havne hvor som helst inni.

 

På tegningen under er det oppgitt dimensjoner med individuelle bilaterale toleranser.

Legg merke til at dette kan skape følgefeil og ifølge tegningen vil hele delen ha en total lengde på 110 +/- 0,4. Dersom det er viktig at delens totale lengde blir 110 +/- 0,1 må dette oppgis.

Toleranser oppgis noen ganger slik:

Toleransetype indikerer i hvilken dimensjon eller på hvilken måte toleransen gjelder.

Dersom ikke annet er oppgit gjelder like bilaterale toleranser for tillatt avvik og retning.

Materialtilstandsymbol indikerer hvordan toleransen skal gjelde. MMC (Maximum Material Condition) betyr at at vi skal ha mest mulig materiale i delen og vil bety at det er ønskelig at utvendige mål (lengder, tykkelser, o.s.v.) lener seg mot den positive toleransen og innvendige mål lener seg mot den negative toleransen (hull, spor, o.s.v.). LMC (Least Material Condition) er det motsatte og brukes f.eks hvis en del er designet til å bli ødelagt ved et gitt trykk som en såkalt "shear pin" eller lignende.

Datoreferansene indikerer fra hvilke referanselinjer toleransene gjelder.

 

I eksempelet over vil posisjonen av (la oss si et hull) ha et tillat avvik fra den oppgitte posisjonen (som ikke står her) på 0,125 i en radius fra punktet med utgangspunkt i referanselinje A, B og C med fokus på at hullet havner på den side av punktet som gir tykkest gods til endene av delen.

Forskjellige måter å målsette en del med ulike resultater av total toleranse.

Tillatt avvik i total lengde, fra øverst til nederst:

+/- 0,05

+/- 0,2 om ikke annet er oppgitt

+/- 0,1

Toleranser og angivelse av riktige grensemål i forhold til bruksområdet er viktig siden prisen på å produsere delen øker dramatisk når presisjonen øker:

 

Pasninger

Grenser på hull og stag (ISO 286-2)

En pasning er forholdet mellom et hull og et stag eller andre deler som skal passe inn i hverandre. ISO 286-2 er en standardisert måte å utregne grensemål for forskjellige pasninger.

De deles opp i 3 typer: klaringspasning (clearance fit), mellompasning (transition fit), presspasning (interference fit).

Stor bokstav refererer til toleransetypen til hullet og liten bokstav refererer til toleransetypen til staget.

preferred-fit-hole.png

Klaringspasning - Denne pasningen har klaring mellom hull og stag i hele toleranseområdet. Den største toleransen til staget er mindre enn den minste toleransen til hullet.

Mellompasning - Denne pasningen kan både ha klaring og lett press, ettersom hvor en ligger i toleranseområdet. Den minste toleransen til staget er innenfor toleransene til hullet.

Presspasning - Denne pasningen har press mellom hull og stag i hele toleranseområdet. Den minste toleransen til staget er større enn den største toleransen til hullet.

En H7/f7 pasning som i eksempelet til venstre ville vært en klaringspasning.

Standarden og tabellene er ofte delt i to, en for hull og en for stag. Når en pasning lages etter standarden for hull skal (som man kan se på tabellen øverst) hullet aldri være mindre enn basismålet. Det vil si at toleransene for hull er unilaterale i positiv retning, de kan være større en basismålet, men aldri mindre. Det er alltid størrelsen av staget som bestemmer pasningen, og omvendt dersom man følger standarden for stag.

Et hull med basisdiameter på 20mm som følger toleransegrad H7 vil altså ha toleranser på +0,021.