Dreiing av løpsemne

Forrige uke ble jeg ferdig med første del av en lengre prossess som i teorien skal ende opp med å bli et fullt fungerende løp til en Mauser M98.

Det hadde vært veldig dyrt å gi alle ferske elever ekte løpsemner å jobbe med, d.v.s. stålstenger med ferdig riflet hull i, så vi bruker standard 30mm rundt bløtstål. De ferdige "løpene" blir også totalt 35cm lange, som er ulovlig kort i norge for jaktrifler uansett. Dette er sannsynligvis for å spare stål og gjøre oppgaven litt raskere, men ikke egentlig noe enklere. Prinsippene er de samme om man skulle laget en lengre pipe.

Her er det ferdige produktet. Det første jeg gjorde var å finne toleransene jeg må forholde meg til. Som vi kan se på bildet er ingen toleranser satt på tegningen, de som er skrevet på er de jeg har ført på. Det oppgis at vi skal følge NS-ISO 2768-1, som er en standard for toleranser som gjelder alle mål som ikke er spesifikt toleransesatt i tegningen, men denne standarden følges bare om det oppgis på tegningen ettersom det finnes flere nøyaktighetsgrader innen denne standarden. Som vi ser så skal vi bruke "middels".

Jeg har ikke i skrivende stund enkel tilgang på tabellen med standarden, men den ser omtrendt slik ut:

NB! Ikke bruk tabellen over i ordentlig arbeid, den er ikke helt korrekt.

Etter det var gjort kunne jeg sette i gang. Jeg kappet et stykke rundstål såpass langt at jeg kunne holde det i kjoksen slik at alt som skulle bli løpet var fritt tilgjengelig, d.v.s. jeg kappet det slik at jeg hadde et oppspenningstykke som kun er til for å trygt feste delen i maskinene.

Jeg dreide hele delen ned til største diameter på tegningen, 29mm. Jeg hadde her 0,2mm toleranse begge veier, så alt mellom 29,2 til 28,8 ville vært akseptabelt. Delen skulle helt til slutt pusses og poleres så jeg la meg godt på overmål, d.v.s. jeg dreide alle diametere ned til øverste toleranse med vilje for å ha mest mulig gods å gå på når jeg skulle pusse delen senere. For å være helt på den trygge siden la jeg meg faktisk på 29,3, men dette viste seg å være unødvendig mye sikkerhet og endte opp med å bli til unødig pussing.

Deretter regnet jeg ut konusvinkelen, eller rettere sagt, toppsleidevinkelen som man kan se på det øverste bildet. Den koniske delen av løpet skulle ha en forskjell i diameter mellom endene på 8mm, så vinkelen på toppsleiden ble bare 0,864°.

Indikasjonsmerkene på toppsleiden er langt i fra presise nok; jeg måtte finne en god måte å sikre riktig vinkel på.

Noen av mine medelever regnet ut at et stykke på 100mm av konusen kom til å ha et avvik i diameter på 3,02 eller noe der omkring og dreiiet konuser og justerte toppsleiden til avviket de målte med skyvelære ble korrekt. En helt kurant, men i min mening tungvindt måte å gjøre det på. Etter et godt tips fra læreren endte jeg opp med å klokke inn vinkelen.

Hvis konusen har en total endring i diameter på 8mm vil dette tilsi en endring på 4mm på en "side". Halvparten av dette vil da bli 2mm over halve lengden av konusen. Jeg kalkulerte som sagt med at konusen var 270mm minus radien 5 (som egentlig ikke er 5mm "lang", men å regne med 5 blir nøyaktig nok) altså 265mm. Halvparten ble da 132,5mm.

Jeg markerte opp 132,5mm på arbeidsstykket og førte toppsleiden frem og tilbake og justerte forsiktig på den med en gummihammer til måleuret viste en endring på 2mm over den avstanden jeg hadde markert opp.

Fra rissemerke til rissemerke, men ikke i rissemerket.

Vi har hverken konuslinjal eller pinolforskyver så konusen måtte lages med toppsleiden. Det går fint det, men da må tverrsleiden flyttes i løpet av konusdreiingen. Med toppsleiden og tverrsleiden nullet ut hadde jeg et nullpunkt på den smale enden av konusen.

Mange passeringer med toppsleiden og flyttinger av tverrsleiden senere:

I den tykke enden av konusen skulle det være en radius på 5mm. Jeg regnet meg frem til at den totale målbare lengden på konusen (den lengden av konusen jeg kunne få pålitelige diametermål fra) var 265mm. Konusen i sin helhet var 270mm, men siden enden av konusen hadde en radie trakk jeg denne fra totalengden i mitt regnestykke. En liten bisetning her er at mellom en diameter på 29 og 25 millimeter som radien var skille mellom blir ikke "lengden" av radien 5mm siden profilen i verktøyet ikke føres mer enn 2mm inn i arbeidsstykket (i forhold til delen som er 29mm i diameter).

Så nøyaktig hvor langt blir partiet med radius?

Vi kan bruke algebra, eller grafe en sirkel for å finne den eksakte lengden. Formelen for å grafe en sirkel ser slik ut:

algebra_funksjon.png

Der X og Y representerer et punkt langs sirkelen og H og V representerer sirkelens midtpunkt på X og Y-aksen respektivt.

R representerer radien.

Med dette kan vi fylle inn dataene våre; vi vet at radien er 5 og at hvis vi tenker på X-aksen som løpet (den delen som er 29mm) vet vi at p.g.a verktøyets radius vil senter av sirkelen stå 5mm fra arbeidsstykket når det er i kontakt med arbeidsstykket, så sirkelens senter blir altså da;

X=0, Y=5

Vi vet at verktøyet skal 2 mm inn i arbeidsstykket, så med disse dataene kan vi fylle ut formelen til å se slik ut:

algebra_funksjon_utfylt.png

Vi kan rense den opp og fjerne nullen i X delen av funksjonen og regne den ut slik:

algebra_svar.png

SIden noe opphøyd i 2 alltid blir et positivt tall vet vi ikke om svaret er 4 eller -4, som er forsåvidt riktig siden det vil være korrekt på begge sider av Y-aksen, men vi skjønner ihvertfall at "lengden" av radien er 4mm. Under kan vi se denne funksjonen grafet opp og vi ser at den blå streken (arbeidsstykket) og den rød sirkelen (formskjæret) møtes på -4 når kuttdybden tilsvarer 2.

Hvis vi sjekker svaret i et CAD program kan vi se at det stemmer:

Den totale lengden av konusen vil da bli 266mm, men som sagt så regnet jeg med 265 og det ble nøyaktig nok ved de toleransene vi jobbet med. Det er også viktig å bemerke at siden konusens store diameter regnes på tegningen fra slutten av radien kan formskjæret til radien føres inn sidelengs med tverrsleiden.

Etter at formen var dreiet gjenstod det pussing og polering.
 

Jeg begynte med grovt 80 smergel for å effektivt få vekk noen stygge, men ikke altfor dype, hakk som hadde oppstått under dreiingen og benyttet gradvis finere smergel opp til 400.

Jeg limte smergelet fast i en bit med L-stokk aluminium for å sikre gjevn kontant med løpet og gjøre det lettere å sikre at det blir tatt like mye over hele løpet slik at det ikke danner seg flukter og bølger i løpet når man ser nedover det.

Deretter våtslipte jeg med 600 og 1200 papir og polerte til slutt med poleringsmiddel.

Helt til slutt kappet jeg løpet fra oppspenningsbiten og dreiet det til korrekt lengde.

Meget pent! Pussingen var det steget av prosessen jeg ble minst fornøyd med. Ikke p.g.a finishen, som ble meget bra, men jeg pusset litt aggressivt ved enden av konusen og ved den skarpe overgangen på radien slik at disse ble noe avrundet. Jeg får passe litt bedre på pussingen min i fremtiden.

Startpistolen i hånd

Jeg er nå i den andre hele uken på skolen. Så langt har det vært en magisk, men samtidig edruende, opplevelse. Vi er i oppstartsfasen, selvsagt som det er, hvilket har stort sett inneholdt informasjon, sikkerhets-briefer og formaliteter.

Det er forfriskende, men allikevel slitsomt å begynne på et nytt verksted. Alt er på andre steder og ingenting er der du forventer. Når det er sagt så er det veldig godt organisert med merkelapper og åpenbare lagringsplasser for verktøy og slikt, men det tar tid å venne seg til nye arbeidsomgivelser. Jeg forsøker så godt jeg kan å være systematisk med å returnere verktøy til sitt rettmessige hjem når jeg er ferdig med det, men jeg har måtte raskt avvenne meg med å stole på at verktøyet jeg henter er det som stod på boksen. To ganger allerede har jeg tabbet meg ut fordi jeg ikke dobbeltsjekket at verktøyet var det jeg antok at det var. Det korrekte er jo å si at jeg ikke har noen andre å klandre enn meg selv og å ta lærdom av det, men det får en til å ville slå noen til blods med en sløv sleiv når ting ikke er på rett plass.

Vi har fått uttdelt en rekke obligatoriske oppgaver som skal innebefatte det mest grunnleggende av det en børsemaker skal kunne. Dette er stort sett produksjonsoppgaver og jeg gleder meg til å takle dem i løpet av året. Noen av mine medelever virket litt betuttet over at det ikke var mer våpenklåing fra dag èn, men det er forståelig at man må ha en god forståelse av funksjon før man piller fra hverandre noe man ikke kan sette sammen igjen. Men det vil nok bli plenty med våpentafsing etterhvert.

Det er ikke så nøye for min del, altså, hvem liker ikke å skyte og mekke på ting, men jeg er mer interessert i maskinersingprosesser, fremstillingsmåter, behandlinger og håndarbeid. Jeg liker å produsere ting, spesielt når jeg har funnet det opp selv. Utvikling er vel og bra, men det er ikke hovedsaklig det mitt fremtidige yrke baserer seg på. Det er selvsagt viktig at en børsemaker kan lage deler og våpen, men så vidt jeg har skjønt er det svært sjeldent at en børsemaker bygger helt nye våpen fra bunnen av. Men denne utdanningen gir meg hvertfall evnen til å gjøre det om jeg måtte ønske.

8de208c3912db6ee4363c75f62e4333f.jpg

Det å forme vår verden til å passe oss, lage innretninger som gjør livet enklere, være herrer over vår egen skjebne og å samarbeide mot en bedre morgendag, det er meningen med livet. Det hørtes veldig poetisk og fjollosofisk ut, men jeg mener det med oppriktighet. Mekanikk og teknologi er fascinerende. Det er på mange måter tilfeldig at akkurat våpen er det som pirrer min interesse, men som jeg har snakket om tidligere så er teknologien på det stadiet mellom at hvem som helst kan gjøre det og at man trenger en doktorgrad i kjernefysikk for å holde på med det. Pluss at det er kunstverk som smeller, what's not to love!?

 

Som aller første produksjons-oppgave skulle vi lage en stokkholder:

DSC_0635.jpg

Denne innretningens oppgave er å beskytte treverk og andre myke materialer i stokken (delen av våpenet man holder i) mot oppspenningsmerker i skruestikken. Denne går altså mellom stokken og stikken, med egne skruer slik at den sitter fast rundt våpenet og blir med fra stikke til stikke dersom det skulle være nødvendig å flytte det. Kjekt.

Vi hadde en mal å gå etter, en av lærerne sine egne, men denne er et eksempel av funksjon over form, så at den var helt lik var ikke nødvenig.

Jeg dreide et stykke rundstål til mål og serraterte det.

DSC_0612.jpg

Nydelig.

Treplatene ble generøst tildelt oss fra klasserommet ved siden av, som driver med treverk. Jeg er ikke helt sikker på hva de driver med, men jeg har lyst til å si møbelsnekker. Enda et nobelt yrke.

Platene ble kappet og tilpasset skruetvingen min

Ut av ren latskap enn noe annet, dvs. mindre bytting av verktøy og dreieskjær lagde jeg alle fire skruene på en gang; jeg fjernet mesteparten av massen med stikkskjæret. Ikke helt den optimale måten å gjøre det på, men det gikk fort.

DSC_0614.jpg

Som perler på en snor.

De ble kappet av med baufil, de stakk for langt ut og var for skjøre i denne tilstanden til å kappe dem av helt med stikkstålet. Dessuten stod pinolen i og det var fare for å skade dem når de løsnet fordi de ikke hadde hatt rom til å falle ned.

Før de ble kappet brøt jeg kantene med en flatfil.

Deretter ble de rettet opp og renset hver for seg med vanlig karbidskjær, boret og gjenget.

DSC_0615.jpg

For å rense den lille siden satte jeg fast en bit gjengestang i kjoksen og skrudde skruen inn på den. Når dreiebeken roterer vil den skru seg i "riktig" retning og sitte godt fast mot kjoksen.

DSC_0636.jpg

Tada! Ingen krevende oppgave, men en fin måte å bli bedre kjent med verkstedet og maskinene.

Flere spennende oppgaver og lærdom venter.

Parallellklemme

Etter å ha holdt på i flere måneder er jeg endelig ferdig med parallellklemmen jeg fikk som ekstraoppgave. Det er flere grunner til at det tok så langtid. For det første var det en omfattende oppgave med mange ulike prosesser, noen som jeg måtte lære meg før jeg kunne fortsette. For det andre så har jeg mye annet å holde på med og det har rett og slett ikke vært nok dager med verksted-tid til å bli ferdig.

Men nå er jeg endelig ferdig og kan fortelle litt om veien dit.

Jeg begynte med et stykke 20x20mm stål som jeg planfreste ned til 18x18mm. Toleransene mine var på 0,1mm, men jeg forsøkte som jeg ofte gjør å se hvor nøyaktig jeg kunne få det.

Jeg spente det opp i stikken og freste den ene siden rett, deretter vred jeg stykket 90° og freste den neste siden. Jeg brukte så disse sidene som referansesider da jeg freste de to andre sidene og dermed hele biten ned til korrekt tykkelse. Jeg var i stand til å oppnå en presisjon på +/- 0,02mm her, og det er jeg ganske fornøyd med.

Planfresen gav ikke en fin overflate, så jeg byttet ut de fem skjærene som viste seg å være ganske slitne og senket matehastigheten til litt over halvparten av det den stod på. Så vidt jeg husker benyttet jeg omdreiningstall på rundt 1000 r/min og matehastighet på ca. 250 mm/min. Dette gav en pen overflatefinhet.

Jeg målte så rettheten og parallelliteten og kom frem til at stykket er litt vridd, men det er innenfor toleranser så det gjør ikke noe. Tall på stykket er hundredeler. Stykket skal uansett deles i to, så da blir ujevnhetene "halvert".

Men før jeg kunne begynne med fresingen jeg gjorde i bildene over måtte jeg reparere fresen, eller rettere sagt det digitale avlesersystemet. Det var i ustand og gav ikke pålitelige utslag.

Skruene til sleide-festet var brukket og avleseren som skal sitte statisk på fresen var løs, samt at sleiden på aksebordet var slarkete, så vi tok av alt, renset det og byttet ut skruene.

Mye bedre.

Deretter kappet jeg arbeidsstykket i to og freste sidene like.

Jeg freste dem her ned til korrekt lengde, dvs. 110mm, med ganske imponerende +/-0,01 mm avvik. I etterpåklokskapens navn hadde det vært en fordel å la det være igjen litt materiale siden endene skulle files runde, men det endte opp med å ikke bli et stort problem.

Da stykkene var innenfor korrekte dimensjoner brukte jeg høyderissemåler, rissepenn, linjal og skyvelære for å risse dato- og reveranselinjer.

Med hovedfreseoperasjonene utført filte jeg endene runde. Jeg grovslipte stykkene med slipemaskin og gjorde resten med flatfil og smergel.

Jeg sjekket ofte med radielære og passet på å holde filen rett. Jeg brukte også filen med smergel i mellom for å få en solid flate mot stykket slik at ikke kantene ble ulikt slitt i forhold til midt på stykket som kan oppstå dersom man bruker smergel for seg selv siden det kan strekke seg.

Deretter kom en litt komplisert operasjon. Andre enden av stykkene skal ha en 22,2° vinkel. Her brukte jeg en ganske nøyaktig vinkelmåler for grovkappet.

Jeg hadde allerede risset referanselinjer, så jeg visste hvor vinkelen skulle starte og stoppe på de to sidene. Da jeg kom nærme målene freste jeg ned til jeg nådde en av de to referanselinjene, enten den på toppen eller den på enden og vinklet stykket litt anderledes. Jeg brukte den siden som var korrekt til å rekalibrere fresehodet og gjorde et kutt for å teste vinkelen. Var det enda litt å gå på banket jeg forsiktig på stykket for å endre vinkelen og rekalibrerte stykket igjen for så å ta et nytt kutt. Det finnes nok en mer eksakt måte å gjøre det på, men vi har ikke skrustikker som kan vinkles i 2 akser, så da måtte jeg gjøre det manuelt. Jeg kunne også vinklet selve fresehodet, noe jeg gjør i en senere operasjon, men det hadde blitt enda mer arbeid å få korrekt vinkel.

Jeg ble ganske fornøyd med resultatet.

Jeg boret hull i stykkene som skruene skal gå gjennom og gjenget disse med M10 gjengtapper.

Her benyttet jeg en pinol/senterspiss for å påse at gjengetappen sto rett. Det fungerte veldig bra.

DSC_0943.jpg

Når det er sagt så ble ikke hullene helt korrekt overfor hverandre. Jeg hadde stykkene oppå hverandre i stikken i søylebormaskinen slik at hullene skulle bli på nøyaktig samme sted. 

Men boringen min var tydeligvis litt ute av senter og jeg hadde dem plassert SAMME VEI slik at når jeg snudde det ene stykket rundt får å skru dem sammen ble feilen åpenbar... Så jeg lagde to nye stykker.

Det var ergerlig å starte så godt som helt på nytt, men jeg kunne ikke leve med slikt slett arbeid hengende over meg.

Denne gangen var jeg ekstra nøye med plasseringen av hullene og jeg boret de to stykkene hver for seg. Da ble det bra.

De vinklede endene skulle files runde med en radius på 5mm. Personlig syns jeg det ser bedre ut som det gjør, men jeg fulgte tegningene.

Det eneste som da gjensto å gjøre med selve klemmene var å frese V-sporet som skal holde klemmen sentrert og gi bedre grep om det som klemmes sammen, samt de skrå sporene på sidene.

For å frese V-sporet brukte jeg en 3mm pinnefres med en collet-kjoks og vinklet fresehodet 45°.

For å vinkle fresehodet løsnet jeg de fire boltene som holder det fast som på bildet under.

Jeg byttet ut fresekjoksen til en collet kjoks. Colleter, eller halser, er utbyttbare kjoksstykker med ulike indre diameter for å sette fast mange typer verktøy eller arbeidsstykker. Når man strammer kjoksen presses colleten sammen og griper og sentrerer verktøyet.

For å bytte collet-holderen skrur vi ut trekkstangen som går gjennom fresehodet ved å skru opp mutteren som strammer den på toppen.

Deretter setter vi inn pinnefresen og strammer med kjoksnøkkelen.

Pinnefresen stakk litt langt ut, men det måtte bli sånn for at kjokshodet skulle gå klar av arbeidsstykket.

V-sporet skulle være 3mm bredt, som vil si at med en 45° vinkel blir kuttet 1,5mm dypt. Jeg freste opp sporene i flere passeringer for ikke å skade pinnefresen siden den var så liten og stakk så langt ut.

På sidene brukte jeg en 4mm pinnefres siden enderadiusen på sporet skulle være 2mm. For å frese disse sidene måtte jeg bruke midten av pinnefresen, som fungerte greit, men ikke optimalt. Hadde jeg hatt V-blokker hadde jeg spent opp stykket anderledes for å kunne heve stykket loddrett opp i fresen i endene for å lage et renere kutt, men etter litt opprensking med fil ble resultatet helt OK.

Skruene var relativt enkle å lage, men det å dreie gjengene var noe jeg måtte lære meg for dette prosjektet og det var en liten utfordring, men det ble gjenger av det til slutt og hvordan har jeg dekket i mitt forrige innlegg.

Jeg dreide så tynne ting at hardmetallskjæret til dreiebenken ikke kunne brukes siden benken ikke går fort nok til å oppnå riktig skjærehastighet. Så jeg slipte mitt eget hurtigstålskjær.

Jeg forsøkte å bruke litt kjølevæske på en mer... manuell måte og resultatet ble forsåvidt greit, men det var ikke verdt bryet, spesielt med tanke på at hodet skal serrateres og resten gjenges.

Jeg serraterte med toppsleiden og meget lav matehastighet med trykkluft som blåste ut sponet. Da ble resultatet meget bedre enn tidligere forsøk.

Jeg slipte et nytt formskjær, 3mm bredt med en radius på 1,5, i hurtigstål for å kutte frisporene til gjengene.

Deretter avfaset jeg endene.

Til slutt dreiet jeg gjengene

Badabing badabom, det tok sin tid, men jeg har lært masse.

Og ikke det at jeg ikke visste dette fra før, men dette prosjektet har virkelig gitt meg viktig lærdom:

Stopp. Tenk. Tenk litt mer. Utfør.

Gjenger og hvordan å dreie dem

Skruer binder verden sammen på en enestående måte og dreiing av gjenger er en av de mest utførte maskineringsprosesser i verden, på en årlig basis, så å kunne dreie gjenger ordentlig er viktig kunnskap.

Den tekniske definisjonen på en maskinskrue er et skråplan viklet om en sylinder. Gjenger er altså en opphøyning eller nedfelling av en profil i form av en heliks på den interne eller eksterne overflaten av en sylinder.

For å forstå hvordan vi lager dem må vi forstå hvordan de fungerer og standardene som er i bruk. Desverre er det mer enn én standard, som i seg selv bekjemper formålet med standarder, men det er som det er.

Arkimedes' skrue

De to store enhetsystemene og standardene som bruker dem.

SI - Système international d'unités

Det metriske system og det som blir mest brukt blant forskere og i den vitenskapelige verden. Det som gir mening.

Imperial - British Imperial / Exchequer Standards

Det imperiske enhetsystem som blir offisielt brukt av Libera, Myanmar og USA. Det som ikke gir mening.

 

 

 

ISO - International Organization for Standardization

Etablert i 1927 og holder til i Genève, Sveits. Et konglomerat av alle medlemsnasjonene sine interne standardiserings-organ.

Bruker SI metrisk som hovedstandard, men omfatter også Amerikanske enheter siden dette er en internasjonal gruppe.

ISO har standarder for ALT mulig, ikke bare industri, som for eksempel ISO 8601 som beskriver hvordan man skal skrive tid og dato. Det korrekte formatet er forresten 2017-03-29T23:59:59+01. Så vet du det.

 

DIN - Deutsches Institut für Normung

Blandt annet ansvarlig for mye av moderne bilstandarder, som for eksempel form på bilstereo (1-DIN / 2-DIN) o.s.v.

Viktig ISO medlem og bruker SI enheter.

CEN/EN - European Committee for Standardization / European Standard

EU sitt interne organ for standarder som opererer mye på samme måte som ISO. Hvorfor de har sitt eget når vi har ISO er et godt spørsmål. Norge er medlem i både CEN og ISO.

 

ANSI - American National Standards Institute

De forente staters standardiserings-organ.

De omhandler både metrisk og imperisk, men bruker offisielt metrisk som hovedsystem, men det går for det meste i tommer fortsatt.

BSI Group - British Standards Institution

Storbritannia sitt standardiserings-organ.

Viktig medlem av ISO og CEN. Er på samme måte som USA offisielt sett gått over til metrisk, men i motsetning til sine frigjorte brødre faktisk flinke til å implementere det.

 

NS - Norsk Standard / Standards Norway

Norges offisielle standardiserings-organ.

De har ikke noen kul logo.

Hvis du ser NS-EN så står EN for “Europeisk Norm” og betyr at standarden er adoptert fra ISO/CEN, men kan i andre sammenhenger bety "Engineering Number" og er en standardisert nummerering av materialer.

Great things happen when the world agrees.
— ISO

Gjengestandarder

Som sagt, det å ha mer enn en standard for samme tingen motarbeider formålet med standarder.

De to hovedstandardene når det kommer til gjenger er Metric (M) og Unified (UTS). Metrisk er ISO standard, Unified Thread Standard er hovedsaklig brukt i USA og Canada og styres av ANSI.

Begge standardene bruker 60° V-gjenger, men hovedforskjellen ligger i måleenhetene og gjengemålingen.

Mye på samme måte som tannhjul måles stigningen i det Metriske system med avstanden mellom et punkt på en gjenge og det samme punktet på neste gjenge parallelt med aksen.

Metrisk standard deles i to grupper, metrisk grovgjenger, enkelt kalt M, og metrisk fingjenger, noen ganger kalt MF for Metric Fine.

Alle mål i metrisk gjengestandard oppgis i millimeter. Metriske grovgjenger uttrykkes ved å sløyfe stigningen, f.eks. M14. Dersom det står M14 x 1.5 betyr det at det er metriske fingjenger.

I Unified måles gjengestigningen med hvor mange gjenger som går på en tomme. Dette medfører problemer siden antallet gjenger over en tomme ikke nødvendigvis er et rundt tall, f.eks. 16,5 TPI.

UTS deles i tre grupper, UNC (Unified Coarse), UNF (Unified Fine) og UNEF (Unified Extra Fine).

Mål i UTS er en skikkelig godtepose full av rariteter. Noen ganger oppgis det i brøkdeler av en tomme, noen ganger desimale fraksjoner (0.1120), noen ganger kun som et nummer, f.eks. #4.

 

Gjengeprofiler

Det finnes mange ulike typer gjengeformer og man kan bruke en hvilken som helst form på gjenger så lenge de korresponderer i delene som skal sammenføyes.

De vanligste gjengeprofilene er som følger:

  • a) Standard utrimmet 60° V-gjenger

  • b) ISO metriske 60° V-gjenger, den vanligste gjengformen. Gir stor friksjon og sitter godt.

  • c) Withworth 55° gjenger, mye brukt der man bruker tommer.

  • d) Firkantgjenger, gir veldig lav friksjon og tåler høy last, men vanskelig å produsere. Ofte brukt i ledeskruer i industrimaskiner.

  • e) Trapesgjenger (også kjent som Acme-gjenger). Gir lav friksjon og tåler høy last. Lett å produsere. Brukes også i ledeskruer.

  • f) Buttress-gjenger, brukes som ledeskruer, låseskruer eller tetningskruer i hydraulikk.

  • g) Runde gjenger, gir relativt lav friksjon og brukes mye i ting som skal være lette å skru ut og inn, som lyspærer eller på rørtenger osv.

 

Gjengens anatomi

Ved dreiing av eksterne gjenger (bolter o.l.) er det storediameteren som er viktig, dvs. den ytre diameteren, som er den som oppgis i standardene. M14 bolter er 14mm tykke... teoretisk sett, i realiteten er de gjerne 13,97- 13,79 millimeter for å tillate litt toleranse mellom eksterne og interne gjenger, det er standarder for dette også.

Lillediameter eller indre diameter beskriver dybden på gjengene og representerer roten i eksterne gjenger og toppen i interne gjenger.

Som man kan se på tegningen over er det rot og toppklaring bygget inn i gjengene. Den egentlige størrelsen måles med de teoretiske toppene. Toppklaringen er 1/8 av stigningen og rotklaringen er det dobbelte på 1/4 av stigningen. Disse er omvendt for interne gjenger. H er den teoretiske høyden på gjengene fra spiss til spiss, Harb (arbeidshøyde) kan brukes for den faktiske høyden mellom rot og topp. P står for "pitch" og er stigningen og måles på delediameteren, men kan praktiske sett måles hvor som helst på gjengene.

Forholdet mellom stigning og gjengedybde er grunnen til at 60° gjenger er standard:

400px-ISO_and_UTS_Thread_Dimensions.svg.png

Vinklene i en trekant blir alltid 180°.

I en likesidet trekant er alle vinklene 60° og alle sidene er like lange.

Høyden, dvs. lengden på normalen fra siden som går gjennom et hjørne har et fast forhold i en likesidet trekant:

Dette kommer av Pytagoras' teorem som sier at A² + B² = C².

Dette gir også at C² - A² = B², altså høyden.

Som et eksempel la oss si at stigningen er 6mm, altså lengden av èn side:

I praksis

Det er hovedsaklig to måter å dreie gjenger på. Med toppsleiden, eller med tverrsleiden. Den "korrekte" måten er med toppsleiden.

Med informasjonen over i tankene kan vi sette i gang å dreie gjenger. Jeg tar her hovedsaklig for meg dreiing av eksterne gjenger, men prinsippene ved dreiing av interne gjenger er de samme.

Først setter vi dreiebenken til riktig stigning. Når hovedsleiden blir koblet til ledeskruen beveger den seg X antall millimeter bortover for hver rotasjon av kjoksen, der X er stigningen til gjengene vi skal dreie.

Det er viktig å sørge for at maskinen står stilt inn på riktig standard.

Vi setter toppsleiden til 29,5°, altså litt under halvparten av flankevinkelen. Dette er for å skjære spon av arbeidsstykket på en mer kontrollert, presis og finere måte.

Dreieskjæret er et formverktøy og har samme vinkel som gjengene, 60°.

Tverrsleiden står alltid på null og brukes som referansepunkt.

Kuttdybden økes med toppsleiden. Når toppsleiden brukes til å øke kuttdybden kan vi gå inn hele stigningnen med toppsleiden siden den står vinklet slik at å mate den inn hele stigningen resulterer i en total kuttdybde på 0,86603 ganger stigningen.

Det er viktig at skjæret står rett mot arbeidsstykket, dette kan verifiseres med et enkelt vinkelmål som i bildet under.

Vi starter med å gjøre en veldig liten passering for å verifisere med gjengelære at maskinen er stilt inn riktig og at gjengene blir som vi ønsker.

Deretter tar vi ganske mange passeringer, gjerne 5 - 16 passeringer, avhenging av stigningen. Siden matehastigheten på hovedsleiden er såpass stor når vi dreier gjenger er det nødvendig å dreie med lavt turtall, men som med vanlig dreiing blir resultatet bedre jo nærmere optimal skjærehastighet vi er.

Det er vanlig å ha et frispor i enden av gjengene om dette tillates for å gi skjæret et trygt sted å stoppe og gi et pusterom til operatøren slik at skjæret trygt kan trekkes tilbake ut av veien fra arbeidsstykket.

Når hovedsleiden er engasjert i ledeskruen er det som regel ikke å anbefale å koble den fra, men heller reversere maskinen for å komme tilbake til start. Det er også viktig å ikke røre hovedsleiderattet for å ikke introdusere slark i ledeskruen og endre referansepunktet til gjengeskjæret.

Dersom dreiebenken har en gjengeklokke kan dette gjøres, men da er det viktig at ledeskruen kobles til ved den samme indikasjonen på klokken hver gang.

Dersom man dreier noe mer fler enn en gjengeinngang kan man enten bruke gjengeklokken til å forskyve gjengesporet, eller sette toppsleiden 90° og benytte den til å forskyve gjengene.

Dette har også andre formål, som f.eks. en alternativ måte å øke kuttdybden på ved å alternere hvilken side som kuttes, dog dette gjøres for det meste i CNC maskiner og er ikke en utbredt praksis ved manuell dreiing.

Helt til slutt en veldig god video om dreiing av gjenger som oppsummerer det som står her veldig godt:

Driv verden fremover, bruk ISO <3

Kobber- og nylonhammer

Kobber- og nylonhammeren blir etter det jeg har forstått betraktet som svennestykket for en elev ved TIP Vg1 og slik har det vært i lang tid. Det er en tradisjon å produsere sin egen hammer som bevis på at man har lært det mest essensielle av produksjonsteknikker.

Nå har jeg fullført min egen og jeg er ganske fornøyd med resultatet.

Jeg begynte med å grovkappe Ø20mm rundstål på båndsagen til litt over korrekt lengde før jeg rettet sidene på dreiebenken og korrigerte lengden til 250mm.

Deretter senterboret jeg begge sider slik at jeg hadde noe å sette pinolen i. Siden skaftet på hammeren skal være konisk, det vil si at det har en vinkel og blir noe kjegleformet er det vanskelig, om ikke umulig, å få et godt grep i kjoksen. Så konusen var noe av det jeg gjorde helt til slutt.

Håndtaket skulle serrateres, med andre ord et rute- eller diamantmønster som preges på overflaten og sikrer godt grep i hånden. Dette krever ganske mye trykk på arbeidsstykket så det må være spent opp med pinolen slik at det ikke blir bøyd.

Serratering, kjent som knurling på englesk.

Jeg dreiet håndtaket ned til 18mm som det skulle være for så å serratere det. Jeg eksperimenterte litt med ulike spindelhastigheter og matehastigheter, samt forskjellige mønster for å se hva som ble bra. Jeg endte opp med en relativt mild serratering som ikke er for skarp men som også går dypt nok til å gi et godt grep. En hastighet på 20-40 RPM virket optimalt og jeg benyttet den midterste mønstergrovheten.

Så vidt jeg husker brukte jeg en matehastighet på 0,4 mm/r.

Serrateringen kunne blitt noe dypere, men da jeg presset verktøyet lenger inn bøyde det seg bare lenger ut mot siden ettersom verktøyholderen gav etter og roterte. Mulig jeg kunne ha strammet denne mer, men jeg skal eksperimentere ytterligere med dette i fremtiden.

Det gjorde ikke all verdens, siden verktøyet skal ha en liten vinkel (Ca. 88-89°) slik at du får mindre kontaktflate og derfor høyere trykk og dypere kutt med mindre kraft, men det irriterte meg litt at det ikke ble helt bra. Jeg fikk i ettertid et tips om å bruke trykkluft for å holde sponet ute av veien.

 

Konusdreiing

Skaftet på hammeren skulle være konisk. Jeg har gjort en del konusdreiing allerede, som for eksempel på gjengeadapterene, men jeg har ikke gått særlig i dybden av det.

Konusdreiing brukes for å skape kjegleformer og gradvise senkninger eller økninger i diameter på et arbeidsstykke over en viss lengde.

Konisitet kan utrykkes på forskjellige måter, enten med et stigningsforhold som f.eks.  1 : 10 hvilket betyr at diameteren øker med 1mm per 10mm lengde. Konisitet kan også utrykkes i vinkel med grader, f.eks. 30°.

Det finnes flere måter å dreie konuser på, med toppsleiden, med pinolforskyver eller med konuslinjal, men de to sistnevnte er ektrautstyr til dreiebenken.


Når man dreier en konus med pinolforskyver forskyver den senterspissen i bakdokken slik at arbeidssykket blir stående på skrå mens tverrsleiden beveger seg parallellt med dreiebenken (som den alltid gjør). En spiss festes også i kjoksen og arbeidssykket spennes opp mellom disse spissene, med en arm som skrus på arbeidsstykket for å sikre at det snurrer rundt.

Måten man dreier konusen på kommer an på arbeidet. Toppsleiden kan bevege seg ca +/- 200mm og brukes hovedsaklig til kortere konuser og avfasinger mens pinolforskyver og konuslinjal brukes ved lengre konuser. Ved bruk av konuslinjal og pinolforskyver kan man også bruke maskinmating.

For å dreie en konus med toppsleiden må man vri toppsleiden til ønsket vinkel og flytte skjæret manuelt. Da står arbeidsstykket parallellt med dreiebenken og skjæret beveger seg i vinkel.


Pinolforskyver

Pinolforskyver

Et borestangshode blir brukt som pinolforskyver

Konuslinjal er et apparat som monteres foran eller bak dreiebenken langs med hovedvangene og festes til tverrsleiden slik at den beveger seg innover eller utover i en vinkel ettersom hovedsleiden mates bortover. Tverrsleiden må da koples fri slik at den kan bevege seg fritt, siden den blir styrt av konuslinjalen.

Se video under av en konuslinjal i aksjon. Den lyserosa stangen stilles til ønsket vinkel og tverrsleiden blir tvunget ut og inn ettersom hovedsleiden flytter seg.

 

Litt matematikk:

Det er flere måter å regne ut konusen på:

Denne formelen finner graden på konusen (α0):

En konus er i utgangspunktet, hvis man ser på tegningen over, et trapes, eller to rettvinklede trekanter som står mot hverandre.

Det ligger en del grunnleggende trigonometri til bunns her.

Så hvordan finner man vinkelen til en rettvinklet trekant? Det kommer ann på hvilke sider vi kjenner.  Vi kjenner to sider, den store diameteren og lengden. Med andre ord kjenner vi den motstående side og den vedliggende side. Hypotenusen er ukjent.

På dette eksempelet er a den motstående side fordi den står ovenfor vinkel α.

b er den vedliggende side fordi det er den som møter en annen side i hjørnet med vinkelen vi skal finne.

Den siste siden c er hypotenusen, men den er av null interesse for oss akkurat nå.

Hvis man vet disse sidene kan man bruke tangens for å finne vinkelen. Eller rettere sagt tan^-1. Man bruker tan for å finne sider og tan^-1 for å finne vinkler.

Når man bruker tangens deler man den motstående side på den vedliggende, så a/b.

Jeg måtte bruke toppsleiden for å lage konusen på hammeren, men hva skulle jeg stille vinkelen på? Jeg kunne finne vinkelen på konusen som var 2,2°, men hvis jeg hadde stilt toppsleiden på 2,2° hadde konusen blitt 4,4° siden den tar av materiale på "begge sider". Så ja, jeg måtte stille den på 1,1, men hvordan kom jeg frem til dette?

 

Det finnes en håndregel som sier at:

Men denne fungerer kun opp til rundt 10 grader.

 

En bedre formel (som krever kalkulator) er:

Dette er effektivt konusvinkelen delt på 2.

Jeg utførte operasjonen i flere passeringer. Gradskalaen på toppsleiden indikerer ikke finere enn 1° så å stille inn til 1,1 var en utfordring. Jeg bare tok det på øyemål, men har nå lært at dersom man ikke kan stille inn så fint som man ønsker kan man starte med å ta en litt grovere vinkel, f.eks. 1,5 og måle lengden og diameteren man forventer for så å slå forsiktig på toppsleiden så man minsker graden til man finner ønsket vinkel.

 

Deretter gjenget jeg enden som hammerhodet skal skrues på med M12 gjenger. Enden var dreiet ned til 11,95mm.

Jeg brukte en gjengebakkeholder som man setter i bakdokken på dreiebenken. Den glir fritt frem og tilbake, men parallellt med resten av benken og trees på enden. Når den har fått grep kan man enten vri den om for hånd eller starte dreiebenken på lavt turtall og holde igjen med hendene.

Snudde så skaftet rundt og boret opp det 80mm dype Ø12mm hullet som skal fjerne noe av vekten i håndtaket. Avfaset enden av håndtaket med en 2mmx45° fas og forsenket innsiden for å fjerne skarpe kanter etterlatt av boringen.

Da var det på tide å lage hammerhodet.

Er ikke stort å si om dette, standard dreieoperasjoner ned til gjengestørrelser, d.v.s. 11,95mm for M12 gjengene som skal på disse tuppene.

Helt innerst av roten skulle det et 3mm bredt kutt for å skape litt pusterom for det som skal skrues på og sørge for at det kommer helt inn til og flatene møter hverandre helt. Det var ikke oppgitt hvor dypt dette kuttet skulle være så jeg gikk 0,1mm dypere enn gjengene som skulle på var.

En nokså nervepirrende del av prossessen var å lage hullet som skaftet skulle trees inn i. Jeg markerte opp med rissepenn et punkt midt på hammerhodet på et tilfeldig punkt langt omkretsen. Den er sylindrisk så det spiller ingen rolle hvor jeg begynner siden det ikke er noen andre referansepunkter å ta hensyn til. Jeg kjørnet et hull og sentrerte biten i søylebormaskinen med digital avleser for å forsikre meg om at senter var der senter skulle være. Det så riktig ut så jeg boret opp hullet gradvis til jeg nådde 10,3mm som er gjengeboret til M12.

Da det kom til å gjenge opp hullet valgte jeg å bruke søylebormaskinen. Jeg nevnte i innlegget om gjengeadapterene at jeg måtte finne en mer pålitelig måte oppnå rette gjenger på, dette var løsningen. Jeg satte gjengetappen i kjoksen (slik at kjoksen grep om det sylindriske skaftet, en 3-tanns kjoks kan ikke sentrere en firkant) og dro til skikkelig med to vannpumpetenger. Deretter matet jeg tappen forsiktig ned for hånd og roterte kjoksen rundt med egne hender. Dette sikret veldig rette gjenger.

Jeg gjentok tidligere nevnte prosedyrer for å lage endestykkene, en i nylon og en i "kobber". Vi hadde ikke kobber så da ble det messing.

Disse filte jeg en 3mm radius på, på enden som det står i tegningene.

Endestykkene skrudde på perfekt etter nøysommelig gjenging og alt som gjenstod var å splinte hodet slik at det ikke roterer.

Jeg er nokså fornøyd med resultatet selv om det kunne blitt bedre på noen få punkter, nevnelig konusen på skaftet hvis enderadius ved håndtaket ble 0,1mm for liten, d.v.s jeg hadde for liten vinkel og serrateringen kunne vært dypere, men jeg har lært en hel del og fått en oppriskning i trigonometrien min.