Stål: Krystaller og mikrostrukturer

Så og si alle metaller og ikkemetaller er krystalliske i natur, som vil si at de har en meget organisert og stabil måte å arrangere atomene sine og deres bindinger på. Krystaller er geometrisk ordnede atomer i ulike varianter.

krystallisk.png

Når stål går fra varmt til kaldt og stivner forekommer det nukleasjon av jernet rundt urenheter i blandingen. Disse urenhetene fungerer som katalysatorer og atomene vil aggregere sammen i klynger. Disse gror til korn av homogene krystaller og fortsetter å gro i en geometrisk ordnet struktur til de treffer en annen krystall, som mest sannsynlig ikke har den samme orienteringen som seg selv, og en grense vil skapes mellom disse kornene.

Med mikrostruktur menes en struktur som kun kan observeres med mikroskop.

Med mikrostruktur menes en struktur som kun kan observeres med mikroskop.

Disse korngrensene er i utgangspunktet en generell plan-defekt i materialet som skiller regioner av krystaller med ulik orientering innen et polykrystallinsk materiale.

Disse defektene begrenser termisk og elektrisk ledeevne i materialet. Man skulle altså tro at optimalt sett ville vi gjerne hatt en homogen blokk med materiale bestående av ett korn med én gjennomgående krystallstruktur, men det er ikke tilfellet. For det første er det så godt som uoppnåelig, og problemet med at atomene ordner seg i slike geometriske strukturer er at krystallene blir spesielt svake mot skjærbelastning som går parallelt med krystallstrukturen. Dette er kjent som “slip planes“, skliplan eller skjærflater, og avhengig av krystallstrukturen har et antall belastningsretninger som krystallene er spesielt svake mot.

slip_plane.gif

Skjærbelastninger som forekommer parallelt med krystallets skjærplan har mye lettere for å deformere krystallet enn belastninger som ikke går langs ett av disse planene. Det finnes flere varianter av disse planene avhengig av krystallstrukturen:

Over er eksempel på skjærplan for strukturene enkel kubisk (SC), kropps-sentrert kubisk (BCC) og flatesentrert kubisk (FCC), fra venstre til høyre. Det finnes mange av disse planene avhengig av struktur, og det er et tema innen metallurgien vi ikke behøver å bevege oss inn på nå, men så vidt jeg forstår så refererer tallene til hvilken akse atomene som faller innen skjærplanet befinner seg på og retningen, binært fra 0 til 1 i XYZ.
Forskjellen på disse er hvordan atomene pakker seg i krystallene og kan visualiseres slik:

Disse skjærplanene går alltid gjennom der atomene er tettest pakket sammen, siden de der har lettere for å dytte på hverandre uten “slark“ og oppstår som regel gjennom det største av disse planene som koinsiderer med belastningen på krystallet siden disse planene blir “truffet” først.

Forskyvninger har lettere for å oppstå langs de grønne pilene enn de rød.

Forskyvninger har lettere for å oppstå langs de grønne pilene enn de rød.

En slik forskyvning (eng.: dislocation) stanser når den møter en korngrense. Krystallet kan ikke deformeres ytterligere siden belastningen nå har gått gjennom det første krystallet, truffet en grense til et annet krystall med en struktur som ikke lar seg forskyve like lett langs denne vektoren.

Jern og karbon er aldri i en fullstendig løsning med hverandre i avkjølt tilstand, men blander seg i form av “granuler“ eller “korn“. Disse kornene er krystaller i ulike størrelser og former som sammen utgjør det hele materialet. Disse krystalliske klyngene kan inneholde ulike blandinger av jern og karbon, men binder seg normalt ikke som molekyler i et nytt materiale, med unntak.

Karbonmengden i stålet er av betydning fordi den bidrar til å lage sterkere korngrenser i form av jernkarbid, og siden karbonatomene er mindre enn jernatomene kan de også oppta plasser inni krystallene. Dette kalles en punkt-defekt og gjør at atomene i krystallet har mindre rom og/eller forskyver den interne strukturen i krystallet, som gjør den mer motstandsdyktig for deformasjon.

Siden de geometriske planene i kornene er de svake punktene i materialet er det bedre å ha mange små grenser som går i alle mulige retninger enn å ha et par store krystaller. Små korn har en større grenseoverflate i forhold til volumet slik at det eksisterer flere grenser og bindinger med ulik orientering enn i et liknende volum med større krystaller, slik at en potensiell forskyvning har mindre effekt siden færre forskyvninger kan finne sted i et mindre korn. Mange små korn er generelt sett betraktet som et bedre materiale siden rettede belastninger blir jevnet ut mellom alle de ulikt orienterte krystallene.

Styrken til materialet kan forbedres ved å endre på kornstørrelsene og korngrensene.

Ved korngrenseforsterkning fungerer korngrensene som låsepunkter som hindrer ytterligere forskyvningsforplantning. Siden strukturen til tilstøtende korn varierer i orientering, krever det mer energi for en forskyvning å endre retning og bevege seg inn i neste korn. Korngrensen er også mye mer kaotisk enn kornet, som forhindrer at forskyvningene beveger seg i et kontinuerlig plan. Forminskelse av denne forskyvningen vil hindre at plastisk deformasjon oppstår, og dermed øke bruddstyrken til materialet.

Under en påført belastning vil eksisterende forskyvninger bevege seg gjennom krystallstrukturen inntil det støter på en korngrense, hvor den store ulikheten mellom forskjellige korn skaper et frastøtende stressfelt for å motvirke ytterligere forskyvning. Ettersom flere forskyvninger forplanter seg til denne grensen, oppstår en opphopning av stress i en klynge som ikke er i stand til å bevege seg forbi grensen. Når nok stress er blitt hopet opp på et punkt vil det til slutt overkomme motstanden i korngrensen og forplante seg videre i neste korn og ytterligere deformasjon oppstår.

Ved å redusere kornstørrelsen reduserer man mengden mulig stress-samling ved grensen, og øker mengden av påført belastning som er nødvendig for å bevege en forskyvning over en korngrense.

Jo høyere den nødvendige belastningen for å flytte forskyvningen, desto høyere bruddstyrke. Dermed er det da et omvendt forhold mellom kornstørrelse og bruddstyrke, som demonstrert av Hall-Petch-ligningen.

Imidlertid, når det er en stor retningsendring i orienteringen til to tilstøtende korn, kan forskyvningen ikke nødvendigvis bevege seg fra ett korn til det andre, men i stedet skape en ny fordelingskilde i tilstøtende korn. Teorien forblir den samme at flere korngrenser skaper mer motstand til dislokasjonsbevegelse, og igjen styrker materialet.



Det er av denne grunn det er ønskelig med små og godt sammenblandede korn i stålet og ikke store korn. Når det er sagt, er det naturligvis av denne grunn også vanskeligere å bearbeide et slikt materiale, og rent jern skaper vanligvis ganske store krystaller, som vi nå forstår gjør det enklere å deformere og forme. Dette gjelder selvsagt innenfor et område av størrelser, og dersom krystallene blir veldig store blir det igjen vanskelig å forme materialet på en meningsfylt måte. Dersom en teoretisk stang hadde hatt to store krystaller som på ett punkt langs lengden var den eneste bindingen i stangen, ville den ikke være veldig enkel å forme, men brekke ganske lett.

grain_break_single.png
Pyritt (jernsulfid), ikke et godt eksempel på jernkrystaller, men et kult bilde for å illustrere hvor store krystaller kan gro under rette forhold.

Pyritt (jernsulfid), ikke et godt eksempel på jernkrystaller, men et kult bilde for å illustrere hvor store krystaller kan gro under rette forhold.

Hall-Petch forholdet gjelder stort sett for korn fra 1mm til 10 nm. Det var trodd at dette forholdet mellom kornstørrelse og bruddstyrke var uendelig videreførbart, men under 10 nanometer vil bruddstyrken holde seg lik eller synke igjen, og over 1mm gjelder det samme.

Det er flere andre variabler som bestemmer duktiliteten og styrken i stålet mer enn kornstørrelsen (slik som karbonmengde), men disse fungerer ikke som de skal uten en passende kornstørrelse å jobbe med.

Varmebehandling av stål, hvis metoder vi skal se nærmere på i neste innlegg, hovedsakelig herding, er rett og slett metoder for å endre typene, sammensetningene og ikke minst størrelsene på kornene i materialet.

Så, hvilke typer mikrostrukturer finnes i stål og hvordan oppstår de?

Faser, mikrostrukturerer og karbonets effekt

Når rent jern begynner å stivne fra flytende form (over 1539 °C ) og atomene binder seg og nukleasjon forekommer, vil krystallene forme seg i en kropps-sentrert (BCC) struktur.

Kropps-sentrert kubisk krystall (BCC). Så kalt fordi enheten blir definert med et atom i hvert hjørne og ett i midten av kuben. En mindre tettpakket struktur enn FCC. Har plass til å inneholde mer karbon enn FCC.

Kropps-sentrert kubisk krystall (BCC). Så kalt fordi enheten blir definert med et atom i hvert hjørne og ett i midten av kuben. En mindre tettpakket struktur enn FCC. Har plass til å inneholde mer karbon enn FCC.

Etter en stund med krystallisering og temperaturen synker til 1392 °C forekommer en merkelig ting. Temperaturen slutter å synke i en liten periode som om den blir varmet opp innenfra. Dette er også det som skjer ved at krystallstrukturen reorganiserer seg til en flate-sentrert (FCC) struktur. Dette er en eksotermisk reaksjon slik at den produserer litt varme selv og vil derfor virke som temperaturen står stille i et øyeblikk.

Flate-sentrert kubisk krystall (FCC). Så kalt fordi enheten blir definert med et atom i hvert hjørne og ett i senter av hver flate. En tettpakket struktur som har plass til å inneholde mindre karbon enn BCC.

Flate-sentrert kubisk krystall (FCC). Så kalt fordi enheten blir definert med et atom i hvert hjørne og ett i senter av hver flate. En tettpakket struktur som har plass til å inneholde mindre karbon enn BCC.

Dette kalles et kritisk punkt (eng.: arrest point) og forekommer flere ganger i nedkjølingen. Det kan virke rart at det skjer, for selv om materialet er varmt er det allikevel solid.

Men dersom vi kunne se ting fra atomets perspektiv ville det ikke vært så overraskende. Materialer er stort sett tomrom og avstanden mellom atomene er relativt stor. La oss ikke begi oss ut på atomteori og hvorfor ting i det hele tatt velger å henge sammen, men de har ihvertfall plass til å bevege seg. De kan ikke skyte rundt som de er i stand til i en væske eller gass, men ved å tilføre energi i form av varme kan vi motivere krystallene til å reorganisere seg.

Solidifiseringsprosessen; nukleasjon rundt urenheter (a), ekspandering av de enkelte krystallene (b), danning av kornene (c), korngrenser dannes og et polykrystallinsk materiale oppstår (d).

Herdetemperaturer og andre behandlingstemperaturer er ofte oppgitt rundet av til nærmeste 10°C. Hopp på 10 grader er det mest praktiske temperatursteget å bruke for å endre resultatet av varmebehandling. Det virker kanskje ikke som en stor endring n…

Herdetemperaturer og andre behandlingstemperaturer er ofte oppgitt rundet av til nærmeste 10°C. Hopp på 10 grader er det mest praktiske temperatursteget å bruke for å endre resultatet av varmebehandling. Det virker kanskje ikke som en stor endring når vi snakker om hundrevis av grader, men det merkes like godt for stålet som du kjenner forskjell på 10 plussgrader og 20 plussgrader.

Ved 910 °C skjer det samme igjen, men denne gangen i revers. Krystallstrukturen går tilbake til BCC. Jernet er ved dette stadiet lyst rødt og er en vanlig temperatur for å smi. Ved 770 °C når vi enda et kritisk punkt, men her skjer det ingen endring i krystallstrukturen. Dette er temperaturen der metallet kan bli magnetisk og dersom atomene i materialet alle vrir seg til å “peke“ samme vei vil jernet bli ferro-magnetisk. Dette punktet kalles Curie-punktet. Over denne temperaturen er atomene i for stor bevegelse til å kunne holde en retning.

Alle disse punktene forekommer i omvendt rekkefølge ved oppvarming og er grunnen til at det kan virke som materialet “holder igjen” litt til tider når det varmes opp. Temperaturene er litt annerledes for oppvarming som for nedkjøling, men stort sett likt.

bolt.jpg

Mengden karbon i stålet har en tydelig endring på egenskapene og oppførselen til metallet. I flytende form er karbonet i fullstendig løsning i blandingen, og i første omgang ser man at smeltetemperaturen synker.

Når et materiale blir løst opp i et annet kalles det diffusjon. Dette blir i mange tilfeller en homogen blanding, der stoffene er likt fordelt gjennom det hele. En heterogen blanding vil si noe som ikke er fullstendig løst opp og vil ha klumper av ett stoff fordelt i det andre. Også kjent som emulsjon.

På samme måte som det er en metningsgrense for hvor mye sukker du kan ha i kaffen (ikke din metningsgrense kanskje, men for løsningen😉), er det en metningsgrense for mye karbon som lar seg løse opp i jern. Som i eksempelet med kaffe kommer det et punkt der mer sukker ikke lar seg fordele i kaffen og vil samle seg på bunnen. Blandingen har nådd sitt ekvilibrium, det er likevekt. Hva som er metningsgrensen mellom to stoffer avhenger av stoffene. I tilfellet med jern og karbon er det ca 6,67 vektprosent karbon. Disse stoffene er i ekvilibrium ved 4,3 vektprosent.

Hvilke faser og strukturer som eksisterer i stål med ulike mengder karbon ved ulike temperaturer kan leses av i noe som kalles et fasedigram eller ekvilibriums-diagram:

Dette diagrammet har temperatur på Y-aksen og karboninnhold på X-aksen. Det går fra rent jern på venstre side og stopper ved jernkarbid på høyre side. Diagrammet viser ikke noe mer enn det siden det ikke lar seg gjøre å løse opp mer karbon i jernet enn 6,67%. Ytterligere karbon samler seg som klumper av grafitt i blandingen.

Når det er sagt så er mengden karbon som lar seg løse opp i jern avhengig av temperatur og krystallstruktur. Når jern og karbon er i en flytende løsning er det en homogen blanding. Dersom jern og karbon er i ekvilibrium sies det at det er eutektisk.

eu-tekt-isk, (fra gresk eutēktos (smelter lett); eu (bra, godt), tēktos (smelte); punktet der en blanding har et metningsforhold slik at begge substansene smelter og stivner sammen ved en fast temperatur.

Som vi kan se av diagrammet er alt over den øverste streken (ABCD) flytende, denne streken kalles liquidus og siden tilføring av karbon senker smeltetemperaturen til stålet så er streken kurvet nedover mot midten. Dette kommer av at det kreves mer energi å bryte opp større og renere krystaller. Når vi tilfører “urenheter” (i dette tilfellet karbon) så blir det lettere for varmen og “trenge inn“ i jernet og bryte det opp. På andre siden av punktet C der den øverste streken treffer den under, går temperaturen opp igjen til vi når jernkarbid. Streken under dette (AHJEF) kalles solidus, og alt under denne streken er solid.

Punkt C, der de to øverste kurvene møtes, er det eutektiske punktet der blandingen vil stivne sammen og ikke gå gjennom et slush-stadie der en komponent har er annen smeltetemperatur enn den andre, som vises i områdene til høyre og venstre for dette punktet. Alt til venstre for dette punktet sies å være hypo-eutektisk, eller under-smeltende, mens alt til høyre sies å være hyper-eutektisk, altså over-smeltende. Som diagrammet viser regnes alt over 2,06% karbon for å ikke være stål, men støpejern. Mens alt under 0,02% regnes som ferritt og altså mer eller mindre rent jern, med andre ord, ikke stål.

Så hva betyr alle disse ordene?

Ferritt, austenitt, cementitt, martensitt, perlitt, bainitt, ledeburitt og grafitt er navn på ulike faser og mikrostrukturer av kornene i stålet. Disse strukturene brukes for å identifisere og definere ståltyper og egenskaper. Forekomsten av disse avhenger hovedsakelig av tre ting: karboninnhold, varme og nedkjølingstid.

Dette er metallurgiske termer; de relaterer til krystallformer og typer, og atomsammensetningene i disse.

Ferritt (ferrite): Fase og struktur. BCC-struktur. Rent jern. De hvite områdene på bildet er ferritt-korn. Her kan man også tydelig se korngrensene mellom krystallene.

ferrite.png

Austenitt (austenite): Fase. FCC-struktur. Oppkalt etter Sir William Austen. En solid løsning av karbon i jern som kun oppstår ved høye temperaturer (en solid løsning vil si et fast materiale med en mindre komponent av et annet stoff spredt uniformt igjennom krystallstrukturen; husk at jernet ved bearbeidstemperaturer regnes fremdeles som solid, bare særdeles mye mykere). Austenitt eksisterer ikke i stål ved romtemperatur. Brukes for å beskrive at jernet har nådd det punktet i oppvarmingen som er nødvendig for at det skal re-krystallisere seg fullstendig, altså det øvre kritiske punktet. Dette punktet avhenger som nevnt av karboninnholdet. Stål sies å være austenittisk hvis det har blitt avkjølt over lang tid og ikke er herdet, selv om strukturene som finnes i dette resulterende stålet ikke direkte heter austenitt. Det er intet kritisk punkt ved 1392 °C i austenitt.

austenite.png

Ledeburitt (ledeburite): Fase og mikrostruktur. En blanding av karbon i jern på 4,3%; en eutektisk miks av austenitt og cementitt. Dette er ikke et stål i seg selv og oppstår vanligvis i høy-karbon stål. Finnes vanligvis sammen med cementitt og perlitt. De svarte feltene i bildet er grafitt omgitt av ledeburitt.

ledeburite.png

Cementitt (cementite): Fase og mikrostruktur. Jernkarbid (Fe3C), en meget hard mikrostruktur som får sitt navn fra cementeringsprosessen hvor det først ble identifisert. Også noen ganger kalt «keram». Cementitt er en mettet legering som inneholder 6,67% karbon. Jernkrystaller i BCC-struktur kan ikke holde mer karbon enn dette.

cementite.png

Perlitt (pearlite): Mikrostruktur. Perlitt, som får sitt navn fra perlemor, er en blanding av ferritt og cementitt, arrangert i en lamellær (lagvis) struktur. Oppstår ved sakte nedkjøling av austenitt som inneholder over metningsgrensen sin med karbon ved en høyere temperatur.

pearlite.png

Martensitt (martensite): Mikrostruktur. Kald og solid austenitt. Selvmotsigende siden jeg nettopp sa at austenitt ikke eksisterer i «fast» form, spesielt ikke avkjølt, men dersom oppvarmet stål bråkjøles (altså herdes) vil det ikke rekke å gå gjennom transformeringen til andre strukturer som cementitt og ferritt og bli fryst fast slik det var, dette kalles da martensitt og er svært skjørt og veldig hardt. Martensitt er det vi prøver å oppnå når vi herder noe.

martensite.png

Bainitt (bainite): Mikrostruktur. Bainitt er en mellomting mellom perlitt og martensitt som oppstår når austenitt blir kjølt ned ved en slik rate at krystallstrukturen rekker å omforme seg, men ikke så raskt at full adskillelse av ferritt og cementitt oppstår. En nålete plate-lignende struktur.

Øvre bainitt

Øvre bainitt

Nedre bainitt

Nedre bainitt

Så, først å fremst er karboninnholdet viktig. Mer karbon gir en sterkere legering. Deretter er varmen viktig, materialet må tilføres nok energi til å løsne på krystallene og la dem omforme seg slik at vi kan oppnå en annen krystallstruktur. Men viktigst av alt i varmebehandlingen er nedkjølingstiden. Eller, karbonet er vel det viktigste, siden jern alene KAN IKKE HERDES, men hvis ikke karbonet behandles riktig er vi jo like langt.

Forholdet mellom temperatur og nedkjølingstid - og resulterende strukturer - finnes i noe som kalles et S-kurve diagram, eller rettere et TTT-diagram (Time-Temperature-Transformation).

“Eutektoid temperature” refererer til det nedre kritiske punktet. Hvis noe er -oid så betyr det av det ligner noe eller er lik, men ikke det samme som noe. Akkurat som primater er humanoider. I dette tilfellet betyr eutektoid at noe omformer seg likt eller samtidig, det er sammstemmelse i materialet, på samme måte som det eutektiske punktet i et smeltebad betyr at fasene er i likevekt og vil stivne sammen. Den eutektoide temperaturen er altså den minste temperaturen vi må oppnå for at krystallstrukturen skal kunne forvandle seg (den nederste rød stiplede linjen på ekvilibriumsdiagrammet), derfor kalles det det nedre kritiske punkt.

Vi kan se at det eutektoide punktet til austenitt, altså metningsgrensen for karbon i austenitt er ca. 0,8% ved den nedre kritiske temperaturen, ca. 723°C. Over denne mengden karbon eller under denne temperaturen, begynner det å fortrenge overflødig karbon ut av blandingen under nedkjølingen som blir til jernkarbid og dermed danner perlitt. Det er over denne mengden karbon man ikke kan oppnå ren perlitt uten å få separate biter av jernkarbid.

Dannelsen av perlitt.

Dannelsen av perlitt.

“Austenittisk“ stål. Man kan se at kornene er store og homogene med klare, skarpe og tynne korngrenser.

“Austenittisk“ stål. Man kan se at kornene er store og homogene med klare, skarpe og tynne korngrenser.

Denne prosessen tar tid, og det er viktig å la stålet få kjøle ned sakte og la fysikken gjøre jobben sin dersom man prøver å oppnå en slik struktur. Dette kommer klart frem av diagrammet, der A er austenitt, P er perlitt, B er bainitt og M er martensitt. Som vi også kan se så begynner ikke omformingen av austenitt til martensitt før ved ca 220°C og slutter når blandingen når litt over 100 grader (Den avslutter egentlig aldri, men for praktiske årsaker sier vi at den gjør det). Hvis vi trekker en strek fra den eutektoide temperaturen ved 0 sekunder, ned til herdebadets temperatur ved f.eks. 10 s, ser vi at den hadde gått forbi de andre fasene og gått rett fra austenitt til martensitt. Dersom stålet hadde brukt litt lenger tid, hadde vi sett spor av perlitt og til slutt bainitt når det når grensen for martensitt siden det har rukket å gå inn i “S-kurven“, og bruker det enda lenger tid ender vi opp med et mykt austenittisk stål av eventuelt perlitt eller lederburitt, avhenging av karboninnholdet.

Så lenge stålet er austenittisk når det når grensen for martensitt vil det omforme seg til dette. Det er stort sett kun avhenging av tid, gitt at den nødvendige fasen er tilstede. Martensitt er stort sett det som menes om når det snakkes om herdet stål. Austenitten er som sagt i en FCC -struktur, men ved høyere temperatur (over det øvre kritiske punktet, ca 910°C) vil ferritten være BCC og ha plass til en god del karbon.

media_25d_25d75d87-d74a-46a0-8c4d-45ecf3f27ff5_phpmrgMyj.png
grain_small.png

Så, når vi har en en varm bit med stål med veldig spredte atomer som har mye plass mellom seg, er det plass til karbonatomer, som er mindre enn jernatomer, til å trenge seg inn i selve krystallstrukturene i kornene. Når vi samtidig har en rask nedkjøling som skaper små korn, og nok karbon til å lage sterke korngrenser, kombinert med de nevnte sprekkferdige krystallene som blir låst fast med karbonet fordi det ikke har tid til å bli fortrengt…

urenhet.png

Da får vi et martensittisk stål. Det er knallhardt, men ekstremt skjørt.

I neste innlegg om stålets fantastiske egenskaper skal vi ta for oss mer praktiske eksempler og metoder, og betydningen av herding (som du nå forhåpentligvis har en bedre teoretisk forståelse av), anløping, normalisering, utgløding, settherding, flammeherding og annet spennende stoff som faktisk har en praktisk verdi.

For å oppsummere: Karboninnholdet i jernet har innflytelse på hovedsakelig 3 egenskaper: hardhet, formbarhet og bruddstyrke.

karbon_effekt.png

Og: Disse egenskapene kan vi endre med 2 variabler: temperatur og tid.

Dette innlegget var tungt å skrive og krevde mye research. Dersom du kan mer om dette enn meg og oppdager noe som er feil, skriv en kommentar eller kontakt meg på mail så jeg kan få rettet det opp. Det er mulig jeg tar en pause fra å skrive om stål og skriver om noe litt lettere stoff fremover, men det siste innlegget kommer (og kanskje et bonusinnlegg, det er hemmelig inntil videre). Takk for at du leste, og håper det kommer til nytte.

Stål: Historie og produksjon

Stål er et enestående materiale og absolutt uforlignelig når det kommer til dets utallige bruksområder og egenskaper. Intet annet materiale har bidratt mer til menneskehetens utvikling og ekspansjon enn stål. Hele vår moderne sivilisasjon hviler på det.

Dette er et bredt og komplisert tema som jeg har til hensikt å gå i dypet av, og gi en oversikt over et emne som kan virke uoversiktlig og overveldende, men som i bunn og grunn er ganske simpelt i de store trekk.

Dette blir delt opp i 3 innlegg:

  • Historie og produksjon

  • Krystaller, mikrostrukturer og legeringer

  • Varmebehandling; typer og metoder

Hva er stål?

Stål er en blanding av jern og karbon. Forskjellige ståltyper har ulike blandingsforhold av disse to stoffene og kan inneholde små mengder av andre grunnstoffer som endrer egenskapene til legeringen ytterligere.

Jern er et metall med atomnummer 26 og forkortelse Fe for Ferritt, fra latinske ferrum. Det er det fjerde mest vanlige grunnstoffet i jordskorpen på 5% etter aluminium (8%), silikon (28%) og oksygen (46%). Ettersom du kommer dypere ned blir det mer og mer vanlig, til du når jordens kjerne som er hovedsakelig flytende jern; alt jern på jorden er antatt og utgjøre ca 35% av planetens masse. Metallisk jern oppstår vanligvis ikke på overflaten, men er naturlig dypere i jordskorpen. Det finnes hovedsakelig som brun malm, eller jernoksid, bedre kjent som rust. Det meste av jernet som utvinnes slik kommer fra en type jernmalm som kalles hematitt (Fe2O3), som kommer fra “blodig” på gresk. Friske kuttede biter med jern fremstår med en skimrende grå overflate, men vil etterhvert omdanne seg til jernoksid igjen i en oksygenrik og fuktig atmosfære. Jern er et ganske “aktivt“ metall og binder seg lett med andre stoffer.

Det er et relativt mykt og duktilt materiale og har et smeltepunkt på 1538°C og koker ved 2862°C.

Ulike utgaver av metallisk jern

Karbon er et ikkemetall med atomnummer 6 og forkortelse C fra latinske carbo (kull). Det har 4 elektroner i ytre skall slik at det binder seg veldig enkelt til andre stoffer. I blanding med solide materialer lager høyt karboninnhold i mange tilfeller karbider. Disse er gjerne veldig harde. Rent karbon oppstår i ulike former kalt allotroper og egenskapene til disse er svært ulike. De vanligste formene for karbon er amorft karbon (løst karbon og andre ikke-krystalliske forekomster slik som kull), grafitt og diamant. Grafitt er bløtt og brukes i blyanter, mens diamant er det hardeste materialet vi kjenner til, så man kan se at strukturen til karbonet har stor innvirkning på egenskapene.

Grafitt (venstre) og diamant (høyre)

Produksjon av stål

Jern har vært kjent siden de gamle egypterne, mens kjennskap til stål har eksistert siden ihvertfall 200 år f.Kr. Det oppstod stort sett - som alt annet - i Kina og om de visste hva de drev med eller ikke er usikkert, men de var ihvertfall i stand til å lage en høvelig grei form for stål. Japanerne hadde også stål relativt tidlig, men siden Japan er en vulkansk øy var jernet deres fullt av urenheter og det resulterende stålet var ikke av den beste kvalitet. Dette er grunnen til at de istedenfor å lite på gode materialer måtte smi det de hadde slik at urenhetene ble hamret ut og at det resulterende jernet hadde en intern struktur som var solid. Ved å brette stålet og hamre det sammen banket de ut urenhetene så godt det lot seg gjøre; derfor er det kjente japanske sverdet, katana, brettet så mange ganger og lages med en karbonrik ståltype til eggen og en bløtere legering til kroppen som på ulike måter kombineres for å lage et solid blad. Den kurvede formen til sverdet oppstår ved herdingen pga. sammensetningen av ulike ståltyper.

Vikingene hadde forsåvidt også stål, men ikke fordi de utvinnet det på en effektiv måte. Hvis de hadde godt stål så var det enten plyndret eller handlet fra midt-/sør-europa eller sentral-asia. De hadde stort sett ikke mulighet til å oppnå nok varme for å smelte det ordentlig og i et forsøk på å lage bedre sverd og andre våpen brant de dyreknokler og horn sammen med smijernet, som hadde den utilsiktede effekt å tilføre en kilde til karbon. Dette karbonet sev inn i jernet og lagde stål og dermed bedre sverd, så det er ikke vanskelig å forstå at de trodde dyrets sjel var fanget i sverdet og ga det styrke.

Moderne stålproduksjon oppstod hovedsakelig på 1800 tallet med bl.a. Bessemer-metoden. Stålproduksjon av stor skala var den største pådriveren til den industrielle revolusjon. Moderne metoder for å produsere godt stål ble oppdaget allerede på tidlig til midten av 1700-tallet av Benjamin Huntsman, men prosessen var langsom og ga ikke store kvanta i slengen. Mer om disse senere.

Produksjon av stål som du får “kjøpt i butikken“ er en flerstegsprosess. Jernmalmen er som sagt jernoksid, så det første steget er å fjerne oksygenet for å ende opp med rent jern. Dette gjøres via en reduksjonprosess og den krever at malmen varmes opp til flytende og vel så det. Reduksjonprosessen går ut på å tilføre masse fritt karbon for å binde seg med oksygenet i jernet og lage karbonmonoksid og karbondioksid.

For å oppnå både høy nok temperatur og en god kilde til fritt karbon ble det brukt koks* (eng: coke), som var mye av nøkkelen til moderne stålproduksjon.

Dette ble gjort i store smelteovner enkelt kalt storovner, eller masovner, (eng: blast furnace (“blast“ kommer av at luften skytes inn nedenifra over atmosfærisk trykk)) der en blanding av koks, malm og fluksmiddel (eng: flux), ble helt i fra toppen og for-oppvarmet luft, gjerne 750°C eller varmere, ble blåst inn fra undersiden.

Fluksmiddelet, gjerne kalkstein og andre bergarter med lavere smeltepunkt, ble benyttet for å bidra til at urenhetene i malmen skiller seg ut og “samle opp“ disse urenhetene og lage en sammenhengende masse av dem som ligger og flyter som et lag oppå jernet slik at det lar seg tappe av og fjerne regelmessig. Det flytende jernet som samles på bunnen tappes ut i støpeformer, derav støpejern (eng: pig iron/cast iron/crude iron).

Hematitt (jernmalm)

Antrasitt, eller rent steinkull (venstre) og koks (høyre)

* Koks er et brensel laget av kull. Det produseres i koksovner der steinkull varmes opp uten tilgang til oksygen slik at andre urenheter i kullet drives ut, men ikke forbrenner karbonet. Dette raffinerer det til et veldig rent brensel (tørrdestillasjon).

Trekull og beinkull lages på samme måten, ved å varme opp organisk materiale og benekte tilgangen på luft.

Navnet “pig iron” kommer av at støperennen og de tilkoblede formene (pigs) ligner en purke som mater ungene sine.

Forbrenningen av koksen skaper ekstrem temperatur og produserer karbonmonoksid. Denne karbonmonoksiden reagerer igjen med jernoksidet som igjen lager karbondioksid og fjerner oksygenet i malmen.

I sluttfasen av smelteprosessen er jernet i kontakt med kullet eller koksen det ble smeltet med som riktignok har fjernet oksygenet i malmen og omgjort det til rent jern, men karbonet har også bundet seg til jernet og resultatet vil ha et karboninnhold på rundt 4% av totalvekten. Det er mye.

Etter et deigaktig stadie stivner jernet ved ca 1130°C. Vi har nå en solid jevn blanding i form av støpejern. Som vi kan forstå fra dette har karbonet innvirkning på smeltepunktet til jern. Mer karbon vil gi et lavere smeltepunkt.

Støpejernet i denne tilstanden anses som et mellomstadie i produksjonen av stål, men brukes også til produksjon i støpeformer og det finnes ulike typer støpejern avhengig av bruksområdet. Støpejern er hardt og sterkt og har gode termisk ledende egenskaper, men det er skjørt og ikke veldig elastisk. Det lar seg bearbeide og blir brukt i motorblokker, stekepanner, slitedeler og store installasjoner som må tåle mye vekt. Jeg vil lenger ned forklare nærmere forskjellene på de ulike formene for støpejern, men vi har hovedsakelig grått støpejern og hvitt støpejern. Disse defineres av utseendet på en bruddflate. Hvitt støpejern er hardt og sprøtt, mens grått støpejern er mykere og sterkere.

Neste steg i prosessen for å lage stål er å fjerne alt karbonet som på godt og vondt blandet seg inn i det forrige steget. Hvis omgjøringen av malmen til jern var en deoksidering så må vi nå utføre en dekarbonisering. Dette ble tradisjonelt gjort med en prosess der man varmer opp støpejernet sammen med mer jernmalm, som inneholder oksygen som igjen løsner og binder seg med karbonet i jernet. På noen måter en paradoksal prosess, og i dag er det vanlig å varme opp råjernet elektrisk og blåse inn oksygen som forbrenner karbonet i smeltebadet for en veldig ren prosess som lager veldig rent jern.

Som vi nå vet så vil et høyere innhold av karbon gi et lavere smeltepunkt, så en smart prosess ble oppfunnet av Henry Cort rundt 1783.

Puddelprosessen (eng: puddling) gikk ut på å varme opp jernet adskilt fra selve brennselet slik at man ikke tilførte mer karbon når man prøvde å bli kvitt det.

Jernbadet som bestod av hvitt støpejern med høyt karboninnhold ble varmet opp med indirekte varme og en gjennomstrømning av luft. Veggene i ovnen ble dekket med jernmalm for å tilføre ekstra oksygen. En luke i siden ble åpnet og en arbeider med en lang stang/åre rørte rundt i pytten for å hjelpe oksideringsprosessen. Etterhvert som karbonet i blandingen forbrenner som karbondioksid stiger smeltepunktet til det nå rene jernet og dette blir igjen en deigete substans som fester seg til arbeiderens stang og kan deretter tas ut litt etter litt og hamres ut til en blokk av smijern. Hamringen drev ut det meste av slagget som ble med ut fra pytten. Det engelske navnet for dette produktet er wrought iron, hvilket er en gammel måte å skrive worked på, som rett å slett betyr at det er bearbeidet med slag og andre formgivende prosesser.

Først nå ender man opp med rent jern med ikke mer enn 0,08% karbon.

Før den moderne storovnen ble tatt i bruk var det mindre masovner som produserte stål (eng: bloomery). De var ofte ikke i stand til å oppnå temperaturer som gjorde at jernet ble flytende, men varmt nok til at det smeltet delvis og konsolidere i bunnen som en klump med jern (eng: bloom). De hadde heller ikke mestret bruken av fluks, så klumpen inneholdt også slagg. Det var derfor nødvendig å raffinere jernet på en mer “hands-on“ måte og klumpen ble hamret sammen slik at urenhetene ble fortrengt.

Bloom

Bloomery

Dette jernet er ikke støpejern, for det har ikke blitt støpt, og det inneholder heller ikke like mye karbon, men det har fremdeles et relativt høyt karboninnhold. Dette er en av de tidligste formene for brukbart stål. Det kan betraktes som høy-karboninnholdig smijern.


Etter at jernet er redusert til et mykere, så godt som, karbonløst materiale kan det kan nå tilsettes mer karbon og andre stoffer for å produsere stål med ønskede egenskaper.

Som nevnt tidligere så akkrediteres Benjamin Huntsman med å ha oppfunnet den første effektive måten å lage godt stål på rundt 1740, som mye av nøkkelen bak var at han oppnådde høy nok temperatur til å gjøre stålet godt flytende slik at det blandet seg godt og jevnt, hvilket han som førstemann benyttet koks til. Prosessen hans gikk ut på å smelte “blister steel “, solide jernbarrer som har sugd opp karbon uten å smelte, mye på samme måte som vikingene gjorde; den største forskjellen værende at jernet ble lagt lagvis med kull i lufttette bokser. Navnet blister steel kommer av at det dannet seg “blemmer“ på overflaten av det resulterende stålet. Dette kalles cementeringsprosessen. Dette produktet hadde ikke et helt jevnt karboninnhold og ble kappet i biter, bundet med jerntråd og varmhamret (eng: forged) for å slå ut ytterligere slagg, blande karbonet bedre og produsere et mer homogent materiale. Denne prosessen kaltes faggoting og resultatet ble kalt shear steel.

Benjamin Huntsman tok altså dette stålet, kappet det i biter og puttet det i smeltedigler og puttet disse i en ovn med koks. Dette produserte smeltedigelstål (eng: crucible steel), rett og slett stål som er laget i potter (smeltedigler) slik at det er adskilt fra brennselet. Resultatet var bra for datidens standarder, men prosessen langsom med tanke på kvanta.

Over 100 år senere kom Henry Bessemer til unnsetning med en ny oppfinnelse. Bessemer så behovet for en raskere, billigere og mer effektiv måte å produsere stål på fra råjern og oppnådde dette i 1855 med sin Bessermer-konverter.

Ideen var å ta flytende støpejern rett fra masovnen og helle det i denne maskinen. Den har ingen innebygd oppvarming og blir heller ikke oppvarmet eksternt, men prosessen fungerer på prinsippet at den varme luften som blir skutt inn underifra gjennom blestdysene tilfører oksygen rett inn i blandingen slik at alle urenhetene, spesielt karbonet, silikon og mangan, blir oksidert og forsvinner som gasser ut fra toppen eller legger seg som slagg oppå badet. Oksidasjon av disse stoffene er en eksotermisk reaksjon, som vil si at de avgir varme, og er nok til å holde badet flytende i den opp til 30 min lange prosessen. Ytterligere karbon og andre legeringstoffer kunne også tilsettes i slutten av prosessen for å oppnå en ønsket type stål. Maskinen blir så tippet til den ene siden for å helle av slagget mens den holder på stålet og så til den andre siden for å helle av produktet.

Det var del 1, del 2 er på vei. Hold øynene åpne for den, der vi går i dypet av krystallografi, mikrostrukturer, effekten av ulike karboninnhold og varme og hvordan alt dette henger sammen! Stay tuned!

Justering av avtrekk på flintlås

Det er en stund siden siste innlegg her, men jeg har vært i en periode med mye endringer; jeg har flyttet og begynt i ny jobb. Loggen fortsetter, dog med et lavere tempo. Jeg har noen interessante innlegg kommende etterhvert, men de tar tid å skrive. Nok om det.

Jeg fikk anledning til å jobbe med et pekuliært våpen nylig; en 1700-talls flintlås pistol! For de som ikke vet hva det er, er flintlås et begrep som omfatter mange ulike våpen som benytter en avfyringsmekanisme der flintstein brukes for å antenne kruttladningen. Oppfunnet ca. 1600 — en etterkommer av snapplåsen og hjullåsen — og benyttet i stor grad frem til tidlig 1800 da perkusjonslåsen gjorde sitt inntog.

Brukt hovedsakelig på musketter og andre glattløpede munnladere, som denne, naturligvis kortere, pistolen. Tidlig kruttvåpenteknologi gikk ut på å utvikle raskere, enklere og mer pålitelige måter å antenne en kruttladning utenfor våpenets kammer, som så brant som en lunte inn i våpenet og antente hovedladningen. I motsetning til perkusjonslåsen, som var det første store steget vekk fra denne måten å antenne ladningen på, var flintlåsen relativt treg i funksjonen. Med tanke på at kruttet skulle ta fyr og brenne inn i kammeret så kunne dette under dårlige forhold ta opp til ett sekund mellom avtrekk og avfyring, men på en godt laget flintlås kunne denne forsinkelsen være umerkelig.


Litt krutt helles i fengpannen og det fjærbelastede fengstålet lukkes over for å holde kruttet på plass og beskyttet fra vær og vind. Når avtrekkeren trekkes slippes hanen, som har en bit med flint låst fast i en tvinge-lignende anordning, og slår mot fengstålet slik at det åpner seg og samtidig produserer gnister som blir rettet mot kruttet i pannen. Dette antenner og brenner inn til hovedladningen gjennom et hull i siden av kammeret.

Problemet med denne spesifikke pistolen var at den ikke avfyrte; man kunne spenne hanen bakover, men et trekk i pang-spaken førte ikke til hanefall.

Det kan ha ymse forklaringer, f.eks. at overføringen fra avtrekker til avtrekkerhake er ødelagt, eller at inngrepsflatene er slitt eller ødelagt og henger seg opp. Det var sistnevnte som var problemet her.

Ikke avbildet her er slagfjæren som er en bladfjær som ligger langsmed platen og presser ned på utstikkeren fra spennstykket — som jeg også lærte heter “studdel“. Norske navn på våpendeler er så søte.

Det er to hakk på studdelen, det første er halvspenn og er formet mer som en krok slik at det skal være umulig å trekke av når avtrekkerhaken er i inngrep med denne. Denne posisjonen brukes når våpenet skal lades og hanen må fjernes fra kruttpannen for fylle på krutt. Den andre er inngrepsflaten for avtrekkerhaken og er den som haken trekkes ut av for å avfyre våpenet.

Inngrepsvinkelen er viktig og bidrar mye til hvor sikkert våpenet er og hvor godt avtrekket er. Dersom vi har negativt inngrep kan slagfjæren alene ha kraft nok til å dytte avtrekkerhaken ut av inngrep og våpenet kan gå av av seg selv, også kjent som “hair trigger“, der det bare skal til at du ser hardt på avtrekkeren før det smeller. Dette er ikke ønskelig og er veldig farlig.

Nøytralt inngrep er stort sett helt akseptabelt, der spennkreftene går vinkelrett gjennom inngrepsflatene. Problemet med dette er at dersom avtrekkeren trykkes litt inn og slippes igjen vil ikke inngrepsflatene dytte hverandre på plass igjen og våpenet er nå litt mindre sikkert enn det var. Det er derfor lurt å ha en lett positiv inngrepsvinkel slik at dersom avtrekkeren trykkes inn og slippes igjen vil slagfjæren og avtrekkerhakens fjær sammen dytte inngrepet tilbake til normal posisjon. Dette vil riktignok skape et tyngre avtrekk og er grunnen til at hanen beveger seg ørlite gran bakeover ved avtrekk før den faller. På konkurransevåpen er det vanlig med et mer nøytralt inngrep, mens på militære våpen er inngrepet tungt positivt av sikkerhetsårsaker.

Inngrepsflatenes individuelle vinkel i forhold til deres respektive vippepunkt er også av betydning. Det er ønskelig å ha hanens inngrepsflate på linje med vippepunktet for å minimere hanens bevegelse i avtrekket. Avtrekkerhakens inngrepsflate bør være tangensiell hakens vippepunkt og kan justeres ved å endre vippepunktet.

Det er også viktig at inngrepsflatene matcher slik at belastningen i systemet fordeles over en flate og ikke hviler på ett punkt av avtrekkerhaken. Dette fører til voldsom slitasje og kan ødelegge tuppen av avtrekkerhaken slik at avtrekket blir ruskete og uforutsigbart. Det er også selvsagt viktig at kantene på inngrepsflatene er parallelle slik at belastningen ikke hviler på kun venstre eller kun høyre side av avtrekkerhaken.

Så hvordan fikser vi dette? Hanens inngrepsflate var ikke flat men hadde en lett konkav form og avtrekkerhaken var ikke flat og skarp.

Siden disse delene skal tåle mye last på et lite punkt og ikke deformeres er de herdet knallharde, så filing er bare å glemme. Vi må ty til abrasjon. Abrasive verktøy som diamantfiler eller steinbryner gjør susen. Det er også viktig å ha en god guide til slipingen for at flatene skal bli parallelle og flate igjen. Dette er ikke noe som gjøres for hånd uten oppspenning. En herdet stikke som tåler det verktøyet vi vil gni over den er nødvendig.

Delene settes i mekanismen og en inngrepsvinkel observeres eller bestemmes og på best mulig måte tegnes eller på annet vis lages for å se vinkelen vi skal påføre delen når den står i stikken. Deretter slipes flaten parallelt med toppen på stikken. Her er det viktig å la verktøyet gjøre jobben og ikke påføre for mye trykk. Det finnes andre måter å gjøre dette på, det viktigste er bare at vinkelen holdes konsekvent.

Når det er sagt så er ikke flintlåsmekaniskmer fra sent 1700 tall høyden av mekanisk presisjon, så det var ikke mye som skulle til for å få den til å fungere igjen, men det var interessant å dissekere den.