Plombering av Krag-Jørgensen

November har vært en relativt travel måned med mye diverse arbeid på verkstedet. Jeg holder på med mange prosjekter samtidig, men ingen av dem er fullført enda så jeg har ikke hatt voldsomt mye å skrive om selv om jeg har hatt nok å ta tak i.

Vi har nå etterhvert som det har passert litt tid hatt flere våpen inne som vi har klådd på, noe som selvsagt er den beste måten å opparbeide seg erfaring med yrket på; hands-on klåing. Tidligere i måneden utførte klassen i sin helhet service på titalls skiskyttervåpen fra lokale utøvere, noe som var veldig lærerikt og svært aktuelt med tanke på landet vi bor i.

Denne uken har klassen fått inn en del våpen som skal deaktiveres for diverse kunder der fortjenesten går til klassekassen. En god mulighet for oss å spare litt penger til turer og slikt.

Det ble min oppgave å deaktivere en M1894 Krag-Jørgensen rifle. Dette er en norsk-designet og produsert rifle som ble adoptert av blandt annet USA i 1892 og Danmark i 1889, begge disse nasjonene før Norge adopterte den i 1894. Den danske versjonen differerer betydelig fra den amerikanske og norske versjonen.

Våpenet er spesielt kjent for sitt særegne magasin som ligger pakket under og rundt boltsystemet. Det har en luke på siden man legger patronene i for så å lukke luken, hvilket legger press på systemet og mater patronene opp og inn i mekanismen. Magasinet er kjent for å ta lenger tid å fylle enn på lignende rifler fra den tiden, men er lett å etterfylle og dette kan gjøres uten å åpne sluttstykket.

Våpenet ble designet av Ole Herman Johannes Krag, kaptein i det norske forsvaret og direktør på Kongsberg våpenfabrikk, sammen med børsemaker Erik Jørgensen og ble patentert i 1892.

Våpenet har historisk verdi, spesielt i Norge, og ble mye brukt til jakt på midten av 1900-tallet og utover.

Deaktivering av våpen er en nokså normal oppgave og innebærer at våpenet og dets vitale deler gjøres fullstendig ubukelige. Dette gjøres etter regelverk og graden av plombering varierer mellom våpentyper. Et helautomatisk gevær krever en god del mer destruksjon enn en glattløpet hagle for eksempel. Trikset er da selvsagt å forsøke å utføre disse inngrepene på en så usynlig måte som mulig, samt opprettholde våpenets mekaniske funksjon så godt det går (det er jo litt artig å kunne dra i ladearmer og slikt).

Dette våpenet klassifiserer som et langt repetèrvåpen og krever følgende modifikasjoner:

Minimum 50% av støtbunnen (tuppen av sluttstykkehodet) fjernes i en 45° vinkel og tennstempelhullet sveises igjen.

Tennstempelet fjernes eller avkortes. I dette tilfellet slipte jeg det ned.

Det finnes flere alternativer her, men løpet skal i hvertfall på diverse vis perforeres eller åpnes. Dette er oppgitt i regelverket om utførelse. Jeg valgte å bore 6 hull innenfor den første tredjedelen av løpets lengde der hullenes diameter er lik kaliberet.

For våpen der løpet er festet til rammen, i dette tilfellet skrudd fast, skal et gjennomgående hull bores gjennom låskasse og kammer og en herdet stålstav sveises fast slik at demontering av pipe ikke er mulig. Hullet og stålbiten skal være minst 50% av kammerets diameter. Jeg la den litt under senterlinjen for å skjule sveisemerkene på utsiden.

Ved å senke den litt gjemmes mesteparten  av denne sveisen under treverket i skjeftet. Så lenge det ikke er mulig å putte en patron inn i kammeret, og det gjør det nå ikke.

Det er noen flere punkter, men de er uaktuelle for meg siden de omhandler avtagbare magasiner og lyddempere, der ingen av delene finnes på dette våpenet.

Det var det hele, et stykk ferdig plombert Krag-Jørgensen. Inngrepene ble så godt som usynlig så det er jeg fornøyd med, håper kunden blir fornøyd.

Ellers har jeg fått innvilget en våpensøknad, så mer info om rifla jeg jobber på nå som skal bli min kommer senere. Andre skoleoppgaver kommer også etterhvert, samt andre gøyale prosjekter og eksperimenter jeg holder på med. Stay tuned!

Overflatefinhet

Overflatefinhet er et bredt tema og krav til dette omhandler tilvirkningsmetoder, sluttprosesser, definisjoner og toleranser.

Ved design og produksjon spiller overflatefinhet en betydelig rolle for funksjonen og levetiden til komponenter og maskiner.

Det er f.eks viktig at deler som skal være i kontakt med hverandre, og spesielt dersom de skal gli eller på andre måter være i bevegelse under kontakt, har fin overflate for å sikre så lav friksjon som mulig.

Kulelagerdelen til høyre har krav til fin overflate for å sikre korrekt og god funksjon og vi kan se forskjellen mellom grovforming (øverst) og presisjonssliping og polering (nederst).

Økt glans og refleksjon kommer av at fine overflater er mer uniform i hvor de kaster lyset, i motsetning til grove overflater som kan spre lyset i flere retningen som får det til å se mer diffust ut.

Definisjonen av en overflates natur er tredelt:

  1. Legge (Bearbeidingsretning)
  2. Ruhet
  3. Bølgethet

En annen måte å se dette på er at bølgethet er makro-overflate og ruhet er mikro-overflate.

En fjerde faktor som kan påvirke overflater er enkelte feil, hakk, hull, groper eller riper. Dette regnes vanligvis ikke som en del av den totale overflatefinheten, men har allikevel stor betydning og kan ha utslag for funksjonen.

Mange ulike overflater er ønskelig basert på komponentens funksjon og som i eksempelet over er det svært viktig at bærende overflater i bevegelse, som i kulelagere, har en fin overflate for lav friksjon og lav slitasje. Andre funksjoner som krever ulike overflater:

  • Termisk konduksjon - Krever maksimal kontakt mellom to overflater. Dette fører til speilblanke og rette overflater.
  • Dekorasjon - Varierer veldig mellom ønsket utseende, men krever ofte spesifikke og uniforme legger og sluttprosesser.
  • Adhesjon - Krever maskimal kontakt mellom overflate og substans som lim eller maling, derav grov, men uniform overflate.
  • Friksjon - Dersom stor friksjon ønskes kreves det grove overflater med høye topper og lav kontaktoverflate.
  • Forsegling - Krever fin overflate og lav bølgethet for å oppnå maksimal kontakt mellom de forseglende overflatene, samt lav slitasje.

 

Legge

Legge er en måte å definere topografien av en overflate og hvordan den er arrangert, sett vinkelrett ned på overflaten. Praktisk sett er det retningen på bølgeprofilen som følge av produksjonsmetoden brukt.

poor_finish-n.jpg

Over er et eksempel på ulike typer legge, vertikal (A) og sirkulær (B). Denne typen legge er normalt for dreiing.

Til venstre er et eksempel på en overflate som er bearbeidet med fresing, mest sannsynlig en planfres, og viser en blanding av sirkulær og krysset legge. Øverst på bildet er et skille mellom de to passeringene som vil bidra til at det totale legget blir horisontale striper med kryssede sirkler. Dette kan føre til en ujevn oveflate.

Legge kan også beskrives selv om vi ikke kan se mønsteret eller det ikke er videre tydelig, men det fortsetter å representere i stor grad tilvirkningsmetoden og hvordan verktøyet har bearbeidet materialet.

Kompliserte legger kan gjøre det vanskelig å bestemme finheten til en overflate ettersom overflatefinhet i stor grad er en visuell og taktil sammenligning mellom overflaten og forhåndsdefinerte overflatetolker, ofte kalt en My som i den greske bokstaven µ for 'mikro', og kan se slik ut:

 

Ruhet & Bølgethet

Ruhet måles vanligvis i Ra (Roughness Average) som er den gjennomsnittlige høydeforskjellen mellom mikroskopiske daler og topper i overflaten. Ra måles i mikrometer (µm) eller mikrotommer (µin / µ"). Dette kan også kalles AA eller CLA som står for Arithmetic Average og Center Line Average respektivt.

Som sagt så kan ruhet og bølgethet sees på som to størrelser av samme mål, kun i ulik skala, men der er ikke nødvendigvis slik.         Ruhet sammenlignes ofte med sandpapir, der finere sandpapir føles gjevnere men sandpapiret trenger ikke å være plant, det kan bukte seg og ha bølger men fremdeles ha en fin overflate. De to definisjonene brukes ofte sammen for å definere en profil av en overflate men de har ulike enheter og bruk. Det kommer ann på testlengden av målingen, men de brukes sammen for å definere den gjennomsnittlige ruheten over en gitt testlengde.

Det er mange verdier å ta hensyn til når det kommer til måling og kvantifisering av overflatefinhet og om hvordan dette skal måles strides de lærde:

Det hovedsaklig to enheter, Ra og RMS (Root Mean Square) som er en annen måte å kalkulere ruhet på, men bruker de samme målingene og rådataene.

  • Ra (Roughness average) - Mest vanlig enhet, gjennomsnitt
  • Rz / Rmax (Roughness total) - Totale høyden mellom høyeste topp og laveste dal innen en testlengde
  • Rp (Roughness peak) - Høyeste topp
  • Rv (Roughness valley) - Laveste dal

Ra og Rz og andre benevnelser kan brukes individuelt og hvilken som brukes er mye opp til industristandarden som kan variere mellom industrier. Selve matematikken bak alt dette er noe utenfor hva jeg har behov eller ønske om å gå i dybden av, men Ra kalkuleres hovedsaklig slik:

Man velger en linje som skal representere den teoretiske fysiske størrelsen til delen og regner ut medianen fra den. Noen måter å regne dette på snur også dalene rundt slik:

Ruheten kan også oppgis som et ISO N-nummer fra N1 til N12 der N1 er finest.

Denne måten å måle ruhet på, den mest normale, er ikke nødvendigvis det på grunn av at det er den beste måten, men det kommer mer fra gammelt av, men den er helt kurant.

Noen problemer som Ra og lignende måter å oppgi ruhet på er at det er vanskelig å skille mellom topografier som er toppdominert eller daldominert og andre rare former.

Bølgethet brukes så vidt jeg fortstår ikke innen ISO standardene lenger.

For å måle dette finnes det mange forskjellige apparater, en portabel en kan se slik ut:

Normale overflatefinheter man kan forvente av ulike bearbeidingsmetoder:

Toleransesetting av overflatefinhet beskrives med en 60° V med et langt bein, på den overflaten toleransen gjelder:

En åpen V uten horisontal strek betyr ingenting alene. Dersom materiale må fjernes markeres dette ved å lukke V-en med en strek slik at det blir en trekant. Dersom dette ikke er tillat og flaten enten ikke skal gjøres noe med eller overflaten bare kan forbedres ved tilleggingsprosesser markeres dette med en sirkel inne i V-en.

Dersom en spesifikk produksjonsmetode kreves markeres dette med en lengre horisontal strek på punkt b.

Over er de parametriske symbolene for bearbeidingsretning for punkt d.

Symbolet settes på flaten eller dimensjonen som gjør at den representerer korrekt flate i forhold til projiseringsplanet.

Brotsjing av kammer

Den siste oppgaven som omfatter løpsemnet mitt er å brotsje kammeret. Kammeret er den delen av løpet patronen blir dyttet inn i under lading og der den hviler når den er klar til å bli avfyrt.

Det er for meg en smule forvirrende å bruke ordet "brotsjing" om en operasjon som egentlig ikke er brotsjing. På engelsk heter operasjonen "reaming", som på norsk blir "rømming", men jeg hører ikke dette bli brukt ofte og det er teknisk sett korrekt ettersom brotsjing (eng: "broaching") er en helt annen, men allikevel lignende prosess.

For å klare opp i denne forvirrelsen er brotsjing en sponskjærende bearbeidingsmetode som brukes for å kutte meget presise former på steder man ikke kommer til med fres eller andre verktøy. Det er en meget effektiv og relativt billig prosess. Brotsjing brukes for eksempel til å lage firkantede hull i plater eller kilespor i tannhjul og lignende.

Det finnes hovedsaklig to typer brotsjing; lineær brotsjing og roterende brotsjing.

 

Lineær brotsjing

Lineær brotsjing er i bunn og grunn å presse og dra en stang med gradvis økende tenner over/gjennom arbeidsstykket slik at det former et spor/form. Det etterlater en profil i arbeidsstykket som er lik brotsjen.

Dette funker mye på samme måte som en en-tanns-brotsj eller skraper bare et den kutter hele sporet i en passering og ikke flere passeringer med økende kuttdybde. Kuttdybden er "bygget inn".

Maskinstyrt brotsj.

Manuell klassisk brotsj.

Brotsjer kommer i mange former. Lineære brotsjer krever at hele brotsjen kan passere gjennom arbeidsstyket i sin helhet.

PiercingHardtofindJanenschia-small.gif

 

Roterende brotsjing

Roterende brotsjer fungerer ved å "viggle" en profil gjennom et hull slik at den gradvis kutter seg gjennom og etterlater profilen. Om det er arbeidstykket som beveger seg eller brotsjen er ikke så viktig, og det avhenger veldig av produskjonsmetoden og maskinen. Enten så roterer spindelen og viggler brotsjen eller så roterer brotsjen og arbeidssykket mens spindelen står stille slik at arbeidsstykket viggler brotsjen i spindelen.

En roterende brotsj der spindelen roterer.

En roterende brotsj der brotsjen roterer med arbeidsstykket.

Brotsjen er vanligvis vinklet 1° og viggles rundt for å flytte det kuttende hjørnet.

Roterende brotsjhoder har en konkav flate i enden for å lage en skarp postiv kuttekant. Det er også kuttet frivinkel inn i hver side slik at de høyere delene av brotsjehodet ikke tar borti sidene av det brotsjede hullet og hindrer den i å fungere når den kommer lenger inn i arbeidsstykket.

Roterende brotsjer brukes ofte når hull med rare former skal lages men brotsjen ikke kan gå gjennom hele arbeidsstykket, som f.eks. interne sekskantede skruehoder.

Rømming

Nå for å skrive om det jeg egentlig skulle ta for meg. Rømming brukes for å lage hull som er presise og med god overflatefinhet. Vanlige bor er ikke alltid nøyaktig nok eller vandrer for mye for å bli nøyaktig og lager ofte dårlige overflater inni hullet. Der kommer rømming inn. Det er også en sponskjærende bearbeidingsmetode som lager fine og nøyaktige hull. Rømming kan kun gjøres med roterende, og derav runde, verktøy.

Ikke minst brukes de til å kutte interne profiler på arbeidstykker, mye på samme måte som profilskjær i dreiebenken, men i motsetning til de kuttter de profilen aksialt og ikke radialt. De brukes ofte til å lage svakt koniske hull til kiler eller låsepinner, men også som sluttprosesser for å rense opp borede hull og lignende.

I mitt fagfelt brukes rømmere når man skal lage et kammer, som er det dette innlegget opprinnelig handlet om. Disse rømmerne er sterkt profilert og svært nøyaktige.

De har samme form som det kaliberet og patronen man skal kammre løpet til. Hvorfor det er blitt vanlig å kalle dette for kammerbrotsjer vet jeg ikke. Det var vel for flaut og snakke om rømme hele tiden.

chamber-reaming-dscf1333.jpg

 

Rømming av kammer

Som sagt er kammeret der patronen hviler når den er klar til å bli avfyrt. Det er viktig at kammeret er riktig størrelse både i diameter og dybde. Når patronen avfyres skapes det et enormt trykk i hylsen som gjør at messingen ekspanderer og tetter kammeret slik at den eneste veien kruttgassene og kreftene kan bevege seg er fremover slik at det driver kulen gjennom løpet.

Messingen i hylsen er tynnere lenger fremme slik at den ekspanderer lettere og tykkere helt bakerst for å tåle kreftene i overgangen mellom kammeret og slyttstykket.

For lite kammer fører til at våpenet ikke mater ordentlig, mens for stort kammer kan føre til en drøss med forskjellige feil slik som hylsedeformering, sprekker og hylseseparasjon.

Et godt kammer er selvsagt innenfor toleranser for kaliberet, men det viktigste er nok patronspillet (eng: "headspace") som er avstanden fra den delen av patronen som hindrer videre bevegelse fremover og sluttstykkehodet.

Headspace måles på forskjellige måter, men i riflepatroner er det hovedsaklig fra et sted på hylseskulder til sluttstykkehode.

Headspace måles og sjekkes med eksakte målebiter i stål (kammertolker) som er formet til å passe i kammeret og de kommer i to (eller tre) typer, "GO" og "NO-GO" som viser til om kammeret er OK eller ikke. Hvis sluttstykket går i lås når GO tolken er satt inn er patronspillet over minimalt tillatt avvik og hvis sluttstykket ikke går i lås når NO-GO tolken er satt inn er patronspillet under maksimalt tillatt avvik.

Her er de to tolkene jeg brukte. Løpet skulle kammres i 6,5 x 55 SM. Tolkene er da spesifikt designet til dette kaliberet og kan ikke brukes for å sjekke noe annet enn dette. Den høyre tolken på bildet har litt rødt på seg og betyr at dette er NO-GO tolken.

I ordentlige løpsemner er det selvsagt et "hull" gjennom som man rømmer opp, men dette var en solid stålstang så jeg måtte bore opp mitt eget "løp". Boret som ble brukt var et langt 6,5mm bor.

Dette er rømmeren for kaliberet jeg skal kammre til. Som vi kan se har den profilen til patronen. Helt foran er den helt rund og blank og noen rømmere har en roterende del her og denne funker som pilot og sentrerer rømmeren korrekt.

Rømmeren er godt festet i en rømmekjoks som er spesiell fordi den er frittflytende. Friheten til kjoksen kan justeres og strammes, men den er bevegelig slik at rømmeren blir selv-sentrerende. Hvis vi ikke bruker en slik kan rømmeren knekke eller hullet kan bli usentrert.

Hovedsleiden låses fast på vangene og fungerer som en dødstopp og referansepunkt for bakdokka. Når man rømmer kjører man på svært lav hastighet, ca rundt 100 RPM eller lavere, dette for å ikke skape stor friksjon og varme. Rømming kan også gjøres for hånd.

Bakdokka føres frem til hovedsleiden til den stopper og rømmeren oljes og føres forsiktig inn i løpet. Matingen skal være slik at den ikke presses inn for hardt, men den skal heller ikke subbe. Man kjenner at den biter litt, men man skal ikke tvinge den inn.

Når den tas ut snurrer vi bakdokka en halv runde rundt og skyver bakdokka bakover til rømmeren er ute. Dette gjøres slik at vi ved å føre den tilbake vet ganske nøyaktig hvor langt det er til rømmeren engasjerer arbeidstykket igjen, vi vil ikke bli overrasket her ettersom vi kan bli utålmodig og føre rømmeren for fort og hardt inn. Ved å bruke hovedsleiden som referansepunkt vil vi alltid havne i nærheten av der vi kuttet sist.

Spon blåses av både rømmer og hull og ny olje påføres.

Etterhvert kan vi begynne å teste med tolkene.

På dette tidspunktet skrur vi på låsekassen og tester med sluttstykket. Vi kan måle avstanden mellom løpet og låsekassen med føleblad og slik vet vi hvor mye dypere vi må rømme. Det spiller ingen rolle hvilken av tolkene vi bruker så lenge vi er konsekvente og kalkulerer korrekt i forhold til om det skal gå eller ikke når vi prøver.

Når vi er fornøyde med kammeret rent dimensjonelt kan vi bevege oss over til sluttfasen.

Når kammeret er korrekt vil patronens hode og kropp virke som det går litt langt inn i kammeret, men dette er normalt. Vi kan file en fas eller kurve i åpningen til kammeret så lenge hele kroppen er støttet i kammeret.

Dette er for å sikre pålitelig og god mating.

Deretter pusses kammeret lett slik at det blir blankt og glatt.

Dette er for å sikre god og pålitelig ekstraksjon. Kammeret pusses kun frem til starten av skulderen.

All done. Patronen kammret godt og pålitelig. Dette var en oppgave jeg var en smule redd for å gjøre siden det var den siste oppgaven med løpet som krevde maskinering, men det gikk bra og jeg lærte mye av det.

Toleranser og pasninger

Toleranser

I denne høyt industrialiserte verden der forskjellige firmaer produserer og leverer deler til andre produsenter av alt mellom himmel og jord, er det viktig at man kan stole på at ting passer sammen.

18363588_ml-1-.jpg

Når man produserer en del er det svært vanskelig å opprettholde teoretiske presisjonsmål slik den ble designet. Noe som er f.eks "10mm" er i realiteten ikke 10mm, men 10,01 eller 9,98 millimeter. I mange tilfeller vil dette være akseptabelt presist, og dette varierer voldsomt etter hva bruksområdet på den produserte delen er. Vi kan jobbe oss mot nøyaktig 10mm til vi blir grønne i trynet, så på ett eller annet tidspunkt må vi bare si oss fornøyd med delen og si at det er nærme nok.

fuck-yeah-close-enough.jpg

Disse verdiene er oppgitt av tegningen eller designeren/ingeniøren..

Toleranser kan oppgis på forskjellige måter:

 

Lik bilateral toleranse oppgis med et +/- tegn og indikerer at den angitte toleransen gjelder i begge retninger slik at det totale tillatte avviket her er 0,2.

 

 

Ulik bilateral toleranse oppgis ved at tillatt avvik angis for hver retning. Dette brukes når toleransene er ulike i hver retning. Tegningen viser her et totalt tillatt avvik på 0,3.

 

 

Unilateral toleranse betyr at dimensjonen kun har toleranse i en retning og indikerer som oftest at dette målet absolutt ikke kan være over/under det som er angitt. Tegningen viser et totalt tillatt avvik på 0,1, med ingen mulighet for å overstige 40.

 

 

Grensemål indikerer absolutt maksimalt avvik på dimensjonen og oppgis ved tall som har toleransen "bygget inn". Tegningen viser her et spillerom på 0,3 der dimensjonen kan havne hvor som helst inni.

 

På tegningen under er det oppgitt dimensjoner med individuelle bilaterale toleranser.

Legg merke til at dette kan skape følgefeil og ifølge tegningen vil hele delen ha en total lengde på 110 +/- 0,4. Dersom det er viktig at delens totale lengde blir 110 +/- 0,1 må dette oppgis.

Toleranser oppgis noen ganger slik:

Toleransetype indikerer i hvilken dimensjon eller på hvilken måte toleransen gjelder.

Dersom ikke annet er oppgit gjelder like bilaterale toleranser for tillatt avvik og retning.

Materialtilstandsymbol indikerer hvordan toleransen skal gjelde. MMC (Maximum Material Condition) betyr at at vi skal ha mest mulig materiale i delen og vil bety at det er ønskelig at utvendige mål (lengder, tykkelser, o.s.v.) lener seg mot den positive toleransen og innvendige mål lener seg mot den negative toleransen (hull, spor, o.s.v.). LMC (Least Material Condition) er det motsatte og brukes f.eks hvis en del er designet til å bli ødelagt ved et gitt trykk som en såkalt "shear pin" eller lignende.

Datoreferansene indikerer fra hvilke referanselinjer toleransene gjelder.

 

I eksempelet over vil posisjonen av (la oss si et hull) ha et tillat avvik fra den oppgitte posisjonen (som ikke står her) på 0,125 i en radius fra punktet med utgangspunkt i referanselinje A, B og C med fokus på at hullet havner på den side av punktet som gir tykkest gods til endene av delen.

Forskjellige måter å målsette en del med ulike resultater av total toleranse.

Tillatt avvik i total lengde, fra øverst til nederst:

+/- 0,05

+/- 0,2 om ikke annet er oppgitt

+/- 0,1

Toleranser og angivelse av riktige grensemål i forhold til bruksområdet er viktig siden prisen på å produsere delen øker dramatisk når presisjonen øker:

 

Pasninger

Grenser på hull og stag (ISO 286-2)

En pasning er forholdet mellom et hull og et stag eller andre deler som skal passe inn i hverandre. ISO 286-2 er en standardisert måte å utregne grensemål for forskjellige pasninger.

De deles opp i 3 typer: klaringspasning (clearance fit), mellompasning (transition fit), presspasning (interference fit).

Stor bokstav refererer til toleransetypen til hullet og liten bokstav refererer til toleransetypen til staget.

preferred-fit-hole.png

Klaringspasning - Denne pasningen har klaring mellom hull og stag i hele toleranseområdet. Den største toleransen til staget er mindre enn den minste toleransen til hullet.

Mellompasning - Denne pasningen kan både ha klaring og lett press, ettersom hvor en ligger i toleranseområdet. Den minste toleransen til staget er innenfor toleransene til hullet.

Presspasning - Denne pasningen har press mellom hull og stag i hele toleranseområdet. Den minste toleransen til staget er større enn den største toleransen til hullet.

En H7/f7 pasning som i eksempelet til venstre ville vært en klaringspasning.

Standarden og tabellene er ofte delt i to, en for hull og en for stag. Når en pasning lages etter standarden for hull skal (som man kan se på tabellen øverst) hullet aldri være mindre enn basismålet. Det vil si at toleransene for hull er unilaterale i positiv retning, de kan være større en basismålet, men aldri mindre. Det er alltid størrelsen av staget som bestemmer pasningen, og omvendt dersom man følger standarden for stag.

Et hull med basisdiameter på 20mm som følger toleransegrad H7 vil altså ha toleranser på +0,021.

Gjenging til låskasse og lyddemper

Fase 2 og 3 av løpsemnet var å gjenge det slik at det kunne bli montert i en Mauser 98 låskasse og gjenge munningen til å akseptere en lyddemper.

DSC_0688.jpg

Jeg begynte med å gjenge låskassepartiet, men jeg har få bilder av dette så jeg vil fokusere på gjengene til lyddemperen her. Det som er verdt å nevne med låskassegjengene er at det er viktig å passe på avstanden mellom utvendig og innvendig brystningsflate.

Brystningen er der de to delene møtes og dytter på hverandre slik at gjengene låser og sikrer at delen står rett i forhold til hverandre.

Det sies at Mauseren er konstruert slik at brystningen skal være 60/40, det vil si 60% på den interne brystningsflaten og 40% på den utvendige, men dette er vanskelig å måle/sjekke og ikke minst oppnå med nøyaktighet. Vi lærte uansett at det skal være en ørliten glippe mellom låskassen og løpets utvendige brystning, det viktigste er at den bryster korrekt innvendig, dersom låskassa har innvendig brystning.

En liten sprekk på en tidels millimeter er ønskelig.

For ikke å nevne at låskassegjengene skulle være et besynderlig mål i tommer med en stigning på 12 TPI. Hvorfor en tyskprodusert rifle bruker tommer er ikke for meg å skjønne, men det har vel noe med at designet er over 100 år gammelt. Godt at de kom på bedre tanker etterhvert.

Når det kommer til gjengingen for lyddemper må jeg innrømme at jeg gjorde en dum feil. Ikke noe kjempeproblem, men det tærer på stoltheten. Som man kan se på det første bildet forsøkte jeg å benytte en lang senterspiss for å støtte løpet og få tilgang med verktøyet, men i motsetning til ordinære senterspisser/pinoler som man setter i bakdokka festet jeg denne med en alminnelig borkjoks, som ikke roterer med arbeidsstykket, og endte opp med å friksjonssveise tuppen av senterspissen i enden av løpet som selvsagt herdet seg og ble umulig å jobbe med.

Ikke nok med det, jeg brakk også et senterbor inni der da jeg prøvde å redde situasjonen, men det gjorde jo bare vondt værre. Hadde jeg varmet opp arbeidsstykket og myknet opp metallet som hadde herdet seg fast hadde det nok vært mulig å redde det, men det gjorde jeg altså ikke. Jeg er ikke sikker på hva jeg forventet skulle skje, jeg forsto jo at det ville bli mye varmeutvikling der, men jeg slang på noe olje og kjørte i gang. Det hjalp nok ikke at jeg brukte hardmetallskjær og kjørte på brutale hastigheter. Lesson learned.

Jeg kappet tuppen og gjorde endringer på verktøyet i stedenfor slik at jeg kunne komme til med en roterende senterspiss i bakdokka.

Jeg dreiet brystning og frispor. Et tips jeg fikk som relaterer spesielt til børsemakeryrket er å vente med å lage frisporet helt til sist i prosessen slik at hvis noe ugunstig skulle skje med gjengene så kan man stoppe og flytte gjengeparti og brystning littegrann, i stedet for å kappe hele tuppen og begynne på nytt. Dette kan potensielt gjøre forskjellen mellom en reddet lyddempermontering og et bortkastet løp siden det ble for kort. Men jeg liker å lage frisporet først, som rent teknisk sett er korrekt for å ha et "trygt" område for både operatør og verktøy.

Gjengene som skulle gjenges var M14x1,5 som er noe uvanlig i moderne lyddempere ettersom det gir mindre kontaktflate enn finere gjenger som M14x1 og 1/2" - 28 f.eks. Demperen jeg skulle montere var en gammel slarkete slufse av en dings siden den var blitt mishandlet av utallige tidligere elever. Så da jeg dreiet ytterdiameteren til gjengene startet jeg innenfor ISO toleranser på 13,95 eller noe der omkring, som jeg ikke skulle gjort. Jeg kunne nok gått opp til 14,1 eller høyere, men dette er vanskelig å sjekke før gjengene er dreid. Jeg kunne ha dreiet et prøveparti på en annen bit for å se hvor slapp i fisken demperen var, men det gjorde jeg altså ikke og antok i min naivitet at M14 var M14.

Det ble uansett ikke så slapt at det var noe problem, det er tross alt brystningsflaten som sikrer at demperen står korrekt. Gjengene bare sentrerer og låser.

Etter at gjengene var dreid og sjekket med å prøve demperen, kronet jeg munningen.

Munningen krones for å sikre at kulen slipper løpet i nøyaktig samme øyeblikk på alle punkter langs kulens omkrets. Senterspissen som settes i munningen kan skade riflingen og dette kan føre til dårlig treffsikkerhet. Man kan også benytte munningsskåner som er en liten propp, ofte av messing, som passer perfekt inn i løpet med et hull som senterspissen settes i, i stedet for rett i munningen. Ved bruk av munningsskåner er det ikke nødvendigivis behov for å krone på nytt.

Det er flere måter å krone på, her er noen eksempler:

Kronens utforming er nokså likegyldig så lenge munningsflaten er 90° i forhold til løpet og lik rundt det hele.

Under er noen eksempler på skader som kan kraftig påvirke presisjonen til våpenet:

Her er et dårlig bilde av gjengene og kroningen min:

Og løpet montert i låskassen.

Det er vel overflødig og kun ut av mangel på adjektiver å kalle en oppgave på skolen lærerik. Jeg føler jeg løste den på en god måte, dog min stolthet ble kuttet på lik linje med tuppen av mitt løp, men min kunnskap økte deretter.