Dreiestålholder

En av de første obligatoriske læreplan-oppgavene var å produsere en enkel dreiestålholder. Dette er hovedsaklig en freseøvelse, og det gir mening å begynne med noe sånt, i og med at det slik jeg forstår det er ytterst få elever fra TIP VG1 som har hatt opplæring i fresemaskin, og de som har det har vanligvis ikke hatt mye tid til å øve seg på fresing.

Av de jeg har snakket med, som inkluderer både mine gamle medelever samt mine nye klassekamerater og andre som har gått TIP så er ikke fresen prioritert pensum, blir sett på som for vanskelig eller en hellig maskin som ikke skal røres. Det syns jeg er veldig trist siden det er en meget viktig og integral del av maskinopplæringen og et ekstremt nyttig verktøy. Ikke er det spesielt vanskelig heller, det gjelder bare å tenkte seg om og holde tunga rett i munnen. Det kan bli vanskelig hvis man skal begynne å lage heliske tannhjul og sånne ting, men grunnopplæringen innen fres er på ingen måte rocket science.

Vi skulle ihvertfall lage en dreiestålholder til hurtigstål, som er en blokk med et spor og noen skruer som holder på plass dreieskjæret når man dreier:

DSC_0672_v2.jpg

En grei oppgave for å bli kjent med maskinene på verkstedet og friske opp fresekunnskapene.

s-l225.jpg

Som sagt tar det tid å venne seg til nytt verksted, og det oppbevaringsstedet for metall jeg så i hadde ikke det nødvendige råstålet, så jeg satte i gang å frese ut et adekvat arbeidsstykke fra en stor kloss med stål. Dette viste seg var unødvendig da jeg ble opplyst om hvor vi hadde firkantstål.

Som vi ser på tegningen skal holderen bli 24,5mm begge veier. Å bruke 25 x 25 millimeter firkantstål byr på noen problemer. Stålet kommer ikke helt firkantet, men med kraftig avrundede hjørner, og når det kun skal fjærnes en halv millimeter er det ikke nok til å rette opp kantene. Men læreren sa det ikke var kritisk at hjørnene ble nokså avrundet, jeg syns bare det er verdt å påpeke at det er viktig å starte med et stort nok utganspunkt i alle dimensjoner til å ende opp med det tegningen viser.

Toleranser og overflatefinhet var ikke oppgitt så det ble en oppgave i seg selv å se hvor korrekte mål og god finish jeg fikk til.

Jeg tenkte det var en god idé å rette og rense sidene så jeg planfreste en side og snudde arbeidsstykket 90° og freste den andre siden. Slik hadde jeg gode referanseflater for videre bearbeiding. Jeg flyttet ikke på noe eller indekserte maskinen på nytt da jeg snudde stykket, slik oppnår jeg to teoretisk like kutt og opprettholder den kvadratiske formen til stykket.

DSC_0627.jpg

Jeg endte opp med en endring i tykkelse på 0,1 mm over lengden av stykket; hva det kommer av er vanskeligå si, kan ha vært spon under en side eller dårlige parallellklosser. Jeg spente stykket godt fast og hamret det ned for å sikre god kontakt med støtten, men allikevel ble det et merkverdig avvik her.

Det spilte uansett liten rolle siden jeg nå som sagt hadde to gode referanseflater for videre arbeid. Jeg freste raskt de to andre sidene bare for å få vekk fabrikkbelegget og få et bedre grep i stikka, samt å preparere siden for sporet.

Jeg freste så ut sporet; jeg må innrømme at jeg måtte gjøre dette to ganger siden jeg ikke la merke til at en side, som man kan se på tegningen, er 7mm. Jeg overså dette og antok bare at sporet skulle være midt på. Det virker som uansett hvor mange ganger det blir banket inn i hodene våres i løpet av skolegangen at det er viktig å lese oppgaveteksten nøye gjør man fremdeles slike glipper.

Men jeg tok meg heldigvis i det ganske kjapt og begynte på nytt. Sporet skulle være 10,2mm, et snodig tall, både dypt og bredt. Til dette brukte jeg en 8mm pinnefres.

DSC_0629.jpg

Dersom man bruker en fres som er nøyaktig det målet man skal ha kan kuttet bli litt for stort siden fresen kan hoppe litt eller vandre eller på andre måter ta av litt for mye. Det er bedre å ta dette i flere operasjoner.

Her lærte jeg noe nytt om med- og motfresing. Et tema jeg ikke har snakket så mye om før.

Motfresing er når arbeidsstykket mates i motsatt retning av fresens rotasjonsretning slik at de jobber mot hverandre. Sponet vil starte tynt og gradvis øke i tykkelse mot kuttets slutt.

Motfresing.png

 

Medfresing er når arbeidstykket mates i samme retning som fresens rotasjonsretning slik at de jobber med hverandre. Sponet vil starte tykt og gradvis synke i tykkelse mot kuttets slutt.

Medfresing.png

Motfresing er stort sett betraktet som den trygge metoden å frese på, siden arbeidskreftene jobber mot hverandre og hjelper hverandre til å kutte. Medfesing blir sett på som en utrygg fresemetode, men den kan fint brukes. Det nye jeg lærte om dette var at medfresing ofte gir bedre overflate rett ut av maskinen enn motfresing. Det farlige met medfresing er hvis kuttdybden og/eller matehastigheten er stor eller det er slakk i ledeskruen så kan verktøyet grave seg inn i arbeidstykket og bli ødelagt, ødelegge arbeidsstykket, eller i værste fall sende arbeidsstykket flyvende av gårde hvis oppspenningen er dårlig. Med motfresing vil dette ikke kunne skje.

Så for å få korrekte mål og fine overflater startet jeg med et 8mm spor ned til korrekt dybde, litt lenger enn 7mm inn fra en side. Jeg gikk ned 1mm av gangen. Jeg kunne tatt mer, men jeg valgte å ikke belaste verktøyet unødvendig mye. Deretter freste jeg hver side separat til nær korrekte mål og medfreste den siste biten som var igjen på hver side for en god finish.

DSC_0631.jpg

Etter at dette var gjort var det over til plansliperen for å... planslipe sidene.

DSC_0632.jpg

Plansliper er en maskin jeg ikke har vært så veldig mye borti før. Vi hadde en på skolen i fjor, men den var i ustand. Jeg kjenner til grunnprinsippene, men jeg har aldri brukt den ordentlig før.

Det viste seg å ikke være noe hokus pokus det heller. Det viktigste er at, som i alle maskiner, at arbeidsstykket er skikkelig spent fast. Planslipere bruker vanligvis et elektromagnetisk bord for å gjøre fast det som skal slipes. Dersom det som skal slipes har liten overflate eller lite kontant med bordet kan det fyke av gårde hvis man mater litt fort og dypt.

For sikkerhetsskyld la jeg en solid stålkloss på den siden av arbeidsstykket som slipesteinen dytter på.

Når arbeidssykket er lagt på plass skrur man på strømmen og det sitter bom fast. Så kan maskinen skrus på, høyden stilles inn og så beveges bordet frem og tilbake under slipehjulet mens bordet mates inn eller ut.

DSC_0633.jpg

Plansliping gir en meget pen overflate syns nå jeg, og etterpå kreves det relativt lite arbeid for å blankslipe og polere delen. Det produserer også en meget rett flate.

Jeg brukte plansliperen til å ta arbeidsstykket ned til korrekte dimensjoner. Jeg gikk litt for nærme eksakte mål her og havnet litt på undersiden av målene etter pussing og polering, så det er lurt å legge på en tidel eller så for sluttpussen.

DSC_0637.jpg

Etter litt pussing rettet jeg sidene med en solid pinnefres og tok stykket ned til korrekt lengde.

DSC_0638.jpg

Etter dette kunne jeg bore hullene til set-skruene og gjenge disse. M6 skruer krever 5mm gjengebor, ingen overraskelser her.

Til slutt våtslipte jeg holderen med 600 og 1200 papir og polerte den.

DSC_0639.jpg
DSC_0640.jpg

Ferdig og klar til å brukes! Jeg endte opp med mål på +/- 0,1mm og ganske fin overflate. Resultatet ble ganske pent og jeg er nokså fornøyd.

Jeg kunne ha fått en enda bedre overflate her og der, det er fremdeles noen veldig små hakk og riper. Noe av det stammer fra oppspenningen i stikken til fresen da jeg skulle bore hullene til skruene, men selv om jeg renset stikkekjevene og var påpasselig med holderen og behandlet den forsiktig etter sluttpussen var kjevene såpass 'ødelagt' at de ble noen merker.

Men funksjonelt er den tipp topp.

Produksjon av nytt tennstempel

De to siste ukene har jeg fått muligheten til å prøve å lage et nytt tennstempel til en Browning Buck Mark .22 pistol, helt fra bunnen av.

Maskinering og fabrikering av nye deler er noe jeg synes er svært interessant og det å kunne bruke disse ferdighetene til å reparere ting og få de til å fungere igjen er magisk.

Her ser vi den ødelagte tennålen.

Jeg tok mål av delen og skisset opp planen min.

Noen overflødige mål her og der muligens, men det er bedre å ha for mye informasjon enn for lite. En robust kartlegging i starten sparte meg for en del tid senere.

Jeg startet med et ukjent stykke stål, som mest sannsynlig var normalt konstruksjonstål, men vil fungere helt fint til formålet.

Jeg freste ut rette referansesider og gjorde stykket klart til videre presisjonsarbeid.

Deretter freste jeg begge sider med en solid pinnefres til riktig tykkelse, 1,6mm.

Etter å ha frest den ene siden flyttet jeg fresebordet hele fresens tykkelse + 1,6mm utover og freste vekk den andre siden, som etterlot meg med en fin bit med korrekt tykkelse.

Jeg brukte så den samme pinnefresen til å skjære ut grovkonturen til biten mens den stod oppreist og festet til den solide stålbiten i stikken.

Etter det var gjort spente jeg opp stykket på nytt, nå snudd 90 grader for å frese ut hullet i midten. Dette hullet var ikke sirkulært. Det var 2,4 x 3mm så jeg kunne ikke bare bore det ut. Jeg benyttet en liten 2mm pinnefres og sørget for å kun flytte den i Y aksen (opp/ned) slik at den ikke ble utsatt for sideveis stress som kunne ført til at den knakk. Jeg senket den ned gjennom stykket flere ganger til formen til hullet så riktig ut. Hullet er avlangt for å tillate tennålen å bevege seg fritt på tross av rullesplinten som holder tennålen på plass, men må ikke hindre tennålen i å overføre slaget fra hammeren til patronen.

Da det var gjort spente jeg stykket opp tilbake i oppreist posisjon og kuttet av biten med et kutteblad.

Under ser vi delen og den gamle ødelagte biten som den skal erstatte.

Herfra og utover var det stort sett håndarbeid med filing, sliping og pussing før det siste steget kunne utføres.

Nå begynner det å ligne på noe.

Etter grovfilingen fulgte pussing med fint smergel (600) for å gi delen en bedre og finere overflate og fjerne de siste merkene etter maskineringen og filingen.

Etter litt finpussing ble den siste polishen gjort med fin pussemaskin.

Dette bildet ser jo nesten profesjonelt ut!

Etter mye inn og ut av pistolen for å gjøre siste tilpassinger og sørge for at delen opererer som den skal, var jeg tilfreds med formen og alle klaringene og toleransene.

Nå følger det siste steget, herding og anløping som jeg fikk hjelp med av en av mine mentorer.

Her varmes biten opp til den er rødglødende og dyppes i et pulver som inneholder karbon og smelter det slik at stålet trekker til seg mer karbon.

Herding gjøres for å endre mange ulike egenskaper med metaller som strekkfasthet, hardhet, osv.

Hardheten til metallet kan måles med Rockwell-skalaen og viser hvor motstandsdyktig metaller er mot plastisk deformasjon.

Når metallet herdes skal det raskt avkjøles ved å dyppe det i vann eller olje for å "låse fast" molekylene i materialet i en sterk strukturering som gjør det anspent og knallhardt når det er nedkjølt.

Når man tilsetter mer karbon blir stålet mye hardere, men også sprøere og kan lett knekke. Derfor må man etter herde-prosessen anløpe metaller, dvs. varme det opp til ca 200-400 grader, avhenging av ønskede egenskaper og metallet / legeringen.

Etter delen var herdet slipte jeg vekk det ru skallet for å kunne anløpe den. Det er viktig å se på delen når den anløpes siden det er ofte fargen som oppstår man bruker til å anløpe ting og da må biten være ren og blank med en fin overflate.

Anløping gjøres for å slippe opp litt av stresset i metallet som oppstår ved herding. Dette gjør det mer bøyelig og mindre utsatt for å knekke eller sprekke, samtidig som det opprettholder store deler hardheten fra herdingen. Pluss at det får helt nydelige farger.

Vakkert!

Sannhetens øyeblikk. Fungerer den?

Jada! Avfyrte trygt og pålitelig.

Dette var et fint prosjekt for meg siden det hadde mye rom for feil. Dersom jeg gjorde noe galt var det kun en liten bit stål som ble tapt og ikke en enestående våpendel som var ødelagt for alltid. Det vil så klart ikke være sånn i fremtiden, men for øyeblikket setter jeg pris på bare å få kunne lære tips, triks og teknikker med rom for å feile. Erfaring er den beste lærer, men jeg vil helst ikke mestre noe ved å øve meg på andres eiendeler, for øyeblikket.

Parallellklemme

Etter å ha holdt på i flere måneder er jeg endelig ferdig med parallellklemmen jeg fikk som ekstraoppgave. Det er flere grunner til at det tok så langtid. For det første var det en omfattende oppgave med mange ulike prosesser, noen som jeg måtte lære meg før jeg kunne fortsette. For det andre så har jeg mye annet å holde på med og det har rett og slett ikke vært nok dager med verksted-tid til å bli ferdig.

Men nå er jeg endelig ferdig og kan fortelle litt om veien dit.

Jeg begynte med et stykke 20x20mm stål som jeg planfreste ned til 18x18mm. Toleransene mine var på 0,1mm, men jeg forsøkte som jeg ofte gjør å se hvor nøyaktig jeg kunne få det.

Jeg spente det opp i stikken og freste den ene siden rett, deretter vred jeg stykket 90° og freste den neste siden. Jeg brukte så disse sidene som referansesider da jeg freste de to andre sidene og dermed hele biten ned til korrekt tykkelse. Jeg var i stand til å oppnå en presisjon på +/- 0,02mm her, og det er jeg ganske fornøyd med.

Planfresen gav ikke en fin overflate, så jeg byttet ut de fem skjærene som viste seg å være ganske slitne og senket matehastigheten til litt over halvparten av det den stod på. Så vidt jeg husker benyttet jeg omdreiningstall på rundt 1000 r/min og matehastighet på ca. 250 mm/min. Dette gav en pen overflatefinhet.

Jeg målte så rettheten og parallelliteten og kom frem til at stykket er litt vridd, men det er innenfor toleranser så det gjør ikke noe. Tall på stykket er hundredeler. Stykket skal uansett deles i to, så da blir ujevnhetene "halvert".

Men før jeg kunne begynne med fresingen jeg gjorde i bildene over måtte jeg reparere fresen, eller rettere sagt det digitale avlesersystemet. Det var i ustand og gav ikke pålitelige utslag.

Skruene til sleide-festet var brukket og avleseren som skal sitte statisk på fresen var løs, samt at sleiden på aksebordet var slarkete, så vi tok av alt, renset det og byttet ut skruene.

Mye bedre.

Deretter kappet jeg arbeidsstykket i to og freste sidene like.

Jeg freste dem her ned til korrekt lengde, dvs. 110mm, med ganske imponerende +/-0,01 mm avvik. I etterpåklokskapens navn hadde det vært en fordel å la det være igjen litt materiale siden endene skulle files runde, men det endte opp med å ikke bli et stort problem.

Da stykkene var innenfor korrekte dimensjoner brukte jeg høyderissemåler, rissepenn, linjal og skyvelære for å risse dato- og reveranselinjer.

Med hovedfreseoperasjonene utført filte jeg endene runde. Jeg grovslipte stykkene med slipemaskin og gjorde resten med flatfil og smergel.

Jeg sjekket ofte med radielære og passet på å holde filen rett. Jeg brukte også filen med smergel i mellom for å få en solid flate mot stykket slik at ikke kantene ble ulikt slitt i forhold til midt på stykket som kan oppstå dersom man bruker smergel for seg selv siden det kan strekke seg.

Deretter kom en litt komplisert operasjon. Andre enden av stykkene skal ha en 22,2° vinkel. Her brukte jeg en ganske nøyaktig vinkelmåler for grovkappet.

Jeg hadde allerede risset referanselinjer, så jeg visste hvor vinkelen skulle starte og stoppe på de to sidene. Da jeg kom nærme målene freste jeg ned til jeg nådde en av de to referanselinjene, enten den på toppen eller den på enden og vinklet stykket litt anderledes. Jeg brukte den siden som var korrekt til å rekalibrere fresehodet og gjorde et kutt for å teste vinkelen. Var det enda litt å gå på banket jeg forsiktig på stykket for å endre vinkelen og rekalibrerte stykket igjen for så å ta et nytt kutt. Det finnes nok en mer eksakt måte å gjøre det på, men vi har ikke skrustikker som kan vinkles i 2 akser, så da måtte jeg gjøre det manuelt. Jeg kunne også vinklet selve fresehodet, noe jeg gjør i en senere operasjon, men det hadde blitt enda mer arbeid å få korrekt vinkel.

Jeg ble ganske fornøyd med resultatet.

Jeg boret hull i stykkene som skruene skal gå gjennom og gjenget disse med M10 gjengtapper.

Her benyttet jeg en pinol/senterspiss for å påse at gjengetappen sto rett. Det fungerte veldig bra.

DSC_0943.jpg

Når det er sagt så ble ikke hullene helt korrekt overfor hverandre. Jeg hadde stykkene oppå hverandre i stikken i søylebormaskinen slik at hullene skulle bli på nøyaktig samme sted. 

Men boringen min var tydeligvis litt ute av senter og jeg hadde dem plassert SAMME VEI slik at når jeg snudde det ene stykket rundt får å skru dem sammen ble feilen åpenbar... Så jeg lagde to nye stykker.

Det var ergerlig å starte så godt som helt på nytt, men jeg kunne ikke leve med slikt slett arbeid hengende over meg.

Denne gangen var jeg ekstra nøye med plasseringen av hullene og jeg boret de to stykkene hver for seg. Da ble det bra.

De vinklede endene skulle files runde med en radius på 5mm. Personlig syns jeg det ser bedre ut som det gjør, men jeg fulgte tegningene.

Det eneste som da gjensto å gjøre med selve klemmene var å frese V-sporet som skal holde klemmen sentrert og gi bedre grep om det som klemmes sammen, samt de skrå sporene på sidene.

For å frese V-sporet brukte jeg en 3mm pinnefres med en collet-kjoks og vinklet fresehodet 45°.

For å vinkle fresehodet løsnet jeg de fire boltene som holder det fast som på bildet under.

Jeg byttet ut fresekjoksen til en collet kjoks. Colleter, eller halser, er utbyttbare kjoksstykker med ulike indre diameter for å sette fast mange typer verktøy eller arbeidsstykker. Når man strammer kjoksen presses colleten sammen og griper og sentrerer verktøyet.

For å bytte collet-holderen skrur vi ut trekkstangen som går gjennom fresehodet ved å skru opp mutteren som strammer den på toppen.

Deretter setter vi inn pinnefresen og strammer med kjoksnøkkelen.

Pinnefresen stakk litt langt ut, men det måtte bli sånn for at kjokshodet skulle gå klar av arbeidsstykket.

V-sporet skulle være 3mm bredt, som vil si at med en 45° vinkel blir kuttet 1,5mm dypt. Jeg freste opp sporene i flere passeringer for ikke å skade pinnefresen siden den var så liten og stakk så langt ut.

På sidene brukte jeg en 4mm pinnefres siden enderadiusen på sporet skulle være 2mm. For å frese disse sidene måtte jeg bruke midten av pinnefresen, som fungerte greit, men ikke optimalt. Hadde jeg hatt V-blokker hadde jeg spent opp stykket anderledes for å kunne heve stykket loddrett opp i fresen i endene for å lage et renere kutt, men etter litt opprensking med fil ble resultatet helt OK.

Skruene var relativt enkle å lage, men det å dreie gjengene var noe jeg måtte lære meg for dette prosjektet og det var en liten utfordring, men det ble gjenger av det til slutt og hvordan har jeg dekket i mitt forrige innlegg.

Jeg dreide så tynne ting at hardmetallskjæret til dreiebenken ikke kunne brukes siden benken ikke går fort nok til å oppnå riktig skjærehastighet. Så jeg slipte mitt eget hurtigstålskjær.

Jeg forsøkte å bruke litt kjølevæske på en mer... manuell måte og resultatet ble forsåvidt greit, men det var ikke verdt bryet, spesielt med tanke på at hodet skal serrateres og resten gjenges.

Jeg serraterte med toppsleiden og meget lav matehastighet med trykkluft som blåste ut sponet. Da ble resultatet meget bedre enn tidligere forsøk.

Jeg slipte et nytt formskjær, 3mm bredt med en radius på 1,5, i hurtigstål for å kutte frisporene til gjengene.

Deretter avfaset jeg endene.

Til slutt dreiet jeg gjengene

Badabing badabom, det tok sin tid, men jeg har lært masse.

Og ikke det at jeg ikke visste dette fra før, men dette prosjektet har virkelig gitt meg viktig lærdom:

Stopp. Tenk. Tenk litt mer. Utfør.

Gjengeadapter for styrestag til bil

Da var jeg endelig ferdig med gjengeadapteret til styrestaget som det viste seg at jeg skulle lage to av, siden det så klart må være ett på hver side av bilen. Derfor, sammen med en del andre småting, tok det noe lenger tid å fullføre prosjektet enn det jeg opprinnelig hadde planlagt. Men jeg har lært en hel masse av det.

Under kan man se sammenhengen mellom adapteret og styrestaget for å få et bedre overblikk over bruksområdet. Jeg fikk kun det originale gjengeadapteret som det var min oppgave å lage en forlenget versjon av.

 

Planlegging

Som jeg har skrevet om tidligere målte jeg alle de nødvendige mål med skyvelære og vinkelmåler for så å tegne den nye delen i SolidWorks og printe ut tegninger.

Det viste seg jo etterhvert at de dimensjoner jeg opprinnelig hadde fått oppgitt var feil, at den ikke skulle forlenges med 7mm, men at hele delen skulle være 7cm, altså 70mm, i motsetning til 48,65 som den delen jeg hadde tegnet var.

Ikke nok med det, men på en eller annen mystisk måte hadde det ene målet mitt på 27mm blitt til 22 på tegningen. Menneskelig feil, og man kan se det senere at jeg ikke oppdaget dette før jeg var godt i gang med det første forsøket. Først da jeg satte den nye og den originale delen side om side så jeg at noe var galt.

Jeg hadde prosessen stort sett ferdig i hodet og brukte tegningene som arbeidsplan. Jeg indikerte med tall hva jeg skulle gjøre og i hvilken rekkefølge. Man kan også se hvilke endringer jeg måtte gjøre underveis med kulepenn, men fremgangsmåten forble stort sett det samme.

 

Gjennomføring

Siden jeg hovedsaklig skulle dreie var det naturlig å starte med den tykkeste biten av delen.

Jeg startet med å kutte et solid stykke 40mm rundstål, langt nok til å ha godt med arbeidsrom og godt grep i dreiechucken. Grunnen til at jeg valgte 40mm stål er at selve mutterhodet er 30mm så avstanden fra kant til til kant i sekskanten er 34,64mm.

Deretter fulgte en hel del dreiing. Jeg startet med å dreie et lite hakk i den ene enden for å markere hvor langt jeg trengte å redusere diameteren før jeg tok hele biten ned til Ø34,64mm. Dette kunne for så vidt blitt markert med tusj, men den venstre siden av kuttet er så lang hele biten skal bli, så kuttet ble gjort med presisjon en tusj ikke kunne gitt. Da jeg lagde den andre biten gjorde jeg ikke dette, men sørget bare for at den var lang nok og tilpasset den totale lengden helt til slutt etter at biten var blitt kappet av og snudd rundt.

Bildet under er fra det første forsøket (det som ble laget med feil dimensjoner) så her representerer hakket der mutterhodet starter, men poenget er det samme. De aller fleste bildene er fra det første forsøket og vil variere en smule fra slik jeg forklarer prosessen for sluttproduktene, men det er hovedsaklig helt likt.

Klikk på bildene for å gjøre dem større.

Termisk ekspansjon i materialer er en egen vitenskap, men det er viktig å ta hensyn til det når man jobber med høy presisjon.

Jeg hadde ikke fått oppgitt noen toleranser på det jeg skulle lage så jeg gjorde det til en liten utfordring for meg selv og se hvor nøyaktig jeg var i stand til å produsere delene.

Dette bestod hovedsaklig i veldig mye manuell måling med skyvelære for å verifisere at det målet jeg hadde stilt den digitale avleseren på var korrekt, slik at når jeg fulgte den var det ikke tvil om at det ble presist.

Deretter dreiet jeg mellomstykket som er mellom de ytre gjengene og mutterhodet.

Jeg støtte etterhvert på problemet med store temperaturstigninger i arbiedsstykket. Vi arbeider ikke med kjølevæske av en eller annen grunn, så høye temperaturer kan oppstå ved dreiing av mye materiale over lengre perioder. Dette var et problem siden når stålet utvider seg vil det komme nærmere skjæret og ta av mer enn planlagt, slik at når det kjøler seg ned igjen og krymper vil det være mindre enn det målet man siktet på.

Men selv om det var aldri så korrekt innstilt var fortsatt varme-ekspansjon et problem jeg ikke hadde støtt så mye på tidligere.

Det var ikke kritisk for den største delen av dreiingen, men spesielt da jeg kom til dreiingen av de ytre M16x1mm gjengene var det ganske viktig at det ble korrekt, eller så kunne gjengene bli ubrukelige.

Gjenger er stort sett satt opp slik at det er bolten som har slingringsmonnet, ikke hullet, det vil si at et M16 hull er ganske nøyaktig 16mm mellom dalene i gjengene mens selve bolten er Ø15,974 - 15,794mm mellom toppene. Hvis gjengene på bolten blir for tynne, øker det sjansen for å strippe gjengene siden de vil ha mindre kontaktflate inne i hullet.

Formelen for lineær termisk ekspansjon er:

termisk_ekspansjon.png

ΔL (Delta L) = Endring i lengde

α (Alpha) = Termisk ekspansjons-koeffisient for materiale ved 20°C

L0 (L null / L initiell) = Lengde på materiale ved 20°C i meter

ΔT (Delta T) = Endring i temperatur

Så det kan sies slik: Endringen i lengden er lik koeffisienten ganget med den initielle lengden på materialet ganget med endringen i temperatur.

Jeg vet ikke nøyaktig hvor varmt arbeidsstykket mitt ble, men fargen på sponet kombinert med at jeg ikke klarte å ta på arbeidsstykket gjør at jeg for eksempelets skyld går ut i fra en temperatur på 250-300°C.

La oss ta for eksempel den midterste biten av delen, som skulle være 27mm tykk og regne ut hvor tykk den blir ved 300°C:

  • Koeffisienten for stål er 13. Det vil si 13 x 10^-6 eller 0,000013 meter per grad Celsius.
  • Lengden, eller tykkelsen i dette tilfellet, på materialet er 27mm eller 0,027 meter.
  • Temperaturendringen er 300 - 20 som blir 280°C.

0,000013 x 0,027 x 280 = 0,00009828 som vi kan runde av til 0,0001 meter, eller 0,1mm. Det vil si at delen ved 300C blir 27,1mm. Det vil igjen si at hvis vi dreier den til 27mm ved 300 grader vil den bli 26,9mm når den krymper igjen ned til 20 grader.

Dette er ikke verdens undergang, men det kan ha betydelig utslag og være helt uakseptabelt ettersom hva det er man jobber på. Siden jeg prøvde å gjøre det så nøyaktig som mulig var jeg ofte nødt til å stanse opptil en millimeter ut og la arbeidsstykket kjøle seg ned før jeg tok den siste paseringen ned til korrekt tykkelse. Det var spesielt viktig da jeg dreiet den delen som skulle bli M16x1 bolten. Det er en av de andre grunnene til at det tok litt tid. Hadde jeg jobbet med kjølevæske hadde ikke dette vært et problem. Men jeg lærte jo om lineær ekspansjon av det så jeg kan ikke klage.

 

Her er grovdreiingen ferdig og nå skal jeg gå over på å dreie de skrå seksjonene. Det involverer en 1,5mm 45° avfasing på enden av bolten, en 1mm 45° avfasing fra mellomstykket mot bolten og 2 50° avfasninger på hver side av mutterhodet.

For å gjøre dette løsnet jeg toppsleiden og vinklet den til de respektive gradene på gradskiven.

All done! Nå gjenstår det å kappe den av og avfase den andre siden. Dette gjorde jeg med et 3mm kutteblad, men jeg måtte bytte kuttehodet som vist under.

Her kan man se at jeg har byttet det, eller rettere sagt snudd det. Hvis man ser på den bakre delen av karbid-insettet er det brukket og ubrukelig. For å bytte disse må man gjøre følgende:

Sett det inn slik.

Finn et slikt verktøy.

Vri det rundt 180° og det vil løsne insettet nok til å ta det ut og bytte det.

 

Jeg var også nødt til å bytte insettet i dreieskjæret mitt, dette gjøres ganske enkelt ved å løsne set-skruen.

Her er den ferdig avkappede biten. Optimalt sett skal man stoppe dreiingen og øke omdreiningstallet ettersom man kapper seg inn i materialet for å opprettholde skjærehastigheten. Dette gjøres automatisk på CNC maskiner, men jeg droppet det her siden den allerede gikk nesten så fort som den kunne gå og det gikk fint.

Herfra og utover er bildene av den korrekte biten som ble sluttproduktet. Her ser man den ferdig dreide og avfasede delen som nå er klar for fresing, boring og gjenging.

For å lage mutterhodet brukte jeg delehodet på fresen som jeg har skrevet om tidligere. Mutterhodet skulle være 30mm så for å oppnå det målte jeg diameteren på det som skulle bli mutterhodet og delte på to, deretter satte jeg fresen så nøyaktig inntil toppen som overhode mulig og senket den med tallet jeg fant, 34,64/2 som er 17,32.

Etter å ha funnet midten nullstilte jeg måleren og hevet fresen med 15mm. Jeg senket vel teknisk sett bordet, men resultatet er det samme.

Deretter boret jeg opp hullet til de indre gjengene som skulle være M14 med 12,5mm gjengebor og gjenget begge sider.

Dette burde egentlig vært gjort på dreiebenken, men det verktøyet vi hadde til å lage gjenger på dreiebenken aksepterte ikke gjengebakken for M16x1, så jeg ble nødt til å gjøre det manuelt. Gjengene til M14 hullet på det ene adapteret ble også en smule skjeve, selv om jeg var aldri så forsiktig, så neste gang må jeg finne en mer pålitelig måte å drive gjengetappen ned enn øyemål selv om de i prinsippet skal være selvsentrerende.

TADA! Dette har vært et meget lærerikt prosjekt for meg og det var artig å produsere noe som faktisk skal bli brukt til noe. Det la litt press på meg til å fa det gjort og gjøre det riktig, det skal tross alt brukes i en bil, så om det ryker hadde det ikke vært så artig for meg, men jeg har ikke hørt noe enda så bank i bordet.

Alt du trenger å vite om: Delehode

Et delehode er et instrument som brukes for å rotere eller sette et arbeidsstykke i en spesifikk vinkel og fordele flere fresinger jevnt rundt arbeidsstykket.

I industrielle CNC-freser i dag er det stort sett fresen selv som beveger seg rundt og sørger for vinkler, men i mer tradisjonell fresing er et delehode et meget nyttig verktøy.

Den har vanligvis en kjoks som sentrerer arbeidsstykket, som er viktig siden det skal rotere.

Det har en hovedindeks-skive (A) med 24 hull, slik at det kan frese mange forskjellige relative vinkler.

24 kan deles på 2,3,4,6,8,12 og 24 som gir vinklene 180°,120°,90°,60°,45°,30° og 15° respektivt.

360° / 24 = 15° som er den minste vinkelen oppnåelig ved bruk av kun hovedindeks-skiven.

Hvis man vil lage en typisk heksagonal bolt, for eksempel, som har 6 sider ville man delt 24 på 6 som er 4. Det vil si at hovedindeks-skiven skal flyttes 4 hakk for hver passering med fresen. Da ender du opp med 6 60° sider.

For å sikre en god, rett og solid oppspenning låses chucken med låsepinnen (B) som går inn i hovedindeks-skivens respektive hull.

Dersom man trenger en vinkel utenfor det hovedskiven kan tilby må det benyttes indirekte deling og dersom låsepinnen ikke kan brukes kan chucken låses med en friksjonslås (C).

Selve hodet kan også endre vinkel for å fasilitere andre måter å frese på / mer komplekse operasjoner eller kombinerte vinkler (eng.: compound angles).

For å sette hodet i en annen vinkel løsnes bolt D og E. Deretter kan man lese av ønsket vinkel på vinkelmåleren (F). OBS! Når boltene strammes igjen for å låse fast hodet kommer gradskiven til å vise noe feil vinkel siden den blir trukket nedover når man strammer igjen, så for å oppnå riktig vinkel sett alltid den ønskede vinkelen 0,25 - 0,5 mm til høyre for null. Dette er dog et eldre delehode, og mer moderne utforminger har ikke dette problemet, der låsingen går aksialt gjennom instrumentet og ikke radialt.

Dersom man ønsker å rotere chucken fritt uten å vri på håndtaket må man sette den i "fri" som kan gjøres ved å bruke spak G. For å gjøre det må man løsne mutter H.

 

For å oppnå vinkler mindre enn 15° eller andre vinkler som ikke kan gjøres med hovedskiven bruker man deleskiven (I) som instrumentet arver sitt navn fra.

Deleskiven har ringer med ulike antall hull, dette er for å kunne indeksere brøker. Instrumentet leveres vanligvis med mer en én deleskive med forskjellige antall ringer. En ring blir beskrevet med det antall hull den har, f.eks. ring 20 har 20 hull. Ringene representerer vanlige (og uvanlige) nevnere i brøker.

40 omdreininger med håndtaket (J) = 1 omdreining av chucken = 360°
1 omdreining med håndtaket = 360° / 40 = 9°

Når håndtaket dreies 1 gang dreier chucken 9°
Hvis håndtaket dreies 1/9 omdreining dreier chucken 1°

Dersom man vil oppnå en vinkel på 42° kan man gjøre slik:

bleh.png

Det vil si 4 hele omdreininger og 2 hull på ring 3. Det finnes ingen ring med 3 hull så vi kan forstørre brøken til 20/30 og flytte 20 hull på ring 30. Vi kan stille håndtaket og stopperen inn på riktig ring ved å løsne bolt K. Vi kan også forstørre brøken med andre tall for å få en nevner som samsvarer med en ring vi har på delehodet, f. eks. 22 som blir 44 hull på ring 66.

Det samme gjelder dersom et antall fresinger skal utføres likt rundt et arbeidsstykke, men ikke gir et pent tall i grader, som f.eks. en 7-kant. En 7-kant har en vinkel mellom flatene på ca. 51,43°. Så istedet for å dele med grader, kan vi dele antall totale omdreininger (40) på antall ønskede vinkler (7):

407.png

Det nærmeste, lavere, runde tall som lar seg dele på 7 er 35. 35/7 er 5, altså kreves det 5 hele rotasjoner. Resten blir telleren minus dette tallet, 40-35=5, så resten blir 5 syv-deler. Deretter må vi øke brøken igjen, som i det tidligere eksempelet, siden vi ikke har noen ring med 7 hull. Det er ihvertfall ikke vanlig tror jeg. Så gang teller å nevner med samme tall slik at vi får f.eks 10 hull på ring 14, eller 15 hull på ring 21.

Dermed er det bare å benytte delesaksen M og L.

Flytt saksen så det er 21 hull ledig (figur 1). Sett håndtakslåsen i det første hullet slik at det er 20 hull igjen. Ta den ut og drei så håndtaket 4 hele ganger rundt pluss 20 hull slik at du ender opp på den andre enden av saksen (figur 2). Skyv så saksen rundt (figur 3) og gjenta operasjonen for ytterligere 42°.

delefigur3-4-5.gif

Ressurser hentet fra www.fagteori.dk